The tiny phytoplankton that drive oxygen production and carbon storage in Earth’s oceans are revealing how they navigate their ever-changing underwater world.

cnrs diatom res
Diatoms are unicellular photosynthetic algae, with a silicious skeleton. They belong to the phytoplankton family. Credit: © John Dolan/CNRS Images

Researchers from the CNRS and Sorbonne University have identified a critical mechanism: light-sensing molecules called phytochromes, embedded in the genomes of diatoms, a prominent group of phytoplankton. This discovery sheds light on the strategies microalgae use to adapt to turbulent aquatic environments and shifting light conditions.

Diatoms, like terrestrial plants, perform photosynthesis, contributing significantly to the planet’s oxygen production and carbon capture. However, maintaining this balance in the mixed layers of the ocean requires sophisticated adaptations.

Phytochromes act as “eyes” for these microalgae, detecting subtle changes in the light spectrum as it filters through the water column. By interpreting these variations, diatoms determine their vertical position and adjust their biological activities, particularly photosynthesis.

The study, published in Nature, shows the role of phytochromes in high-latitude, temperate, and polar regions – areas prone to strong water mixing and marked by dramatic seasonal light variations. Through environmental genomic data from the Tara Oceans marine sampling campaigns, researchers discovered that phytochromes are exclusively present in diatoms inhabiting zones beyond the Tropics of Cancer and Capricorn. These regions’ pronounced seasonality appears to demand a mechanism for tracking seasonal changes, with phytochromes enabling diatoms to measure shifts in day length.

This revelation not only illuminates the ways phytoplankton perceive and respond to their environment but also highlights their adaptability in the face of environmental changes. By integrating data from both laboratory experiments and natural marine settings, the research paves the way for a deeper understanding of marine ecosystems and their resilience in a rapidly changing world.

Journal Reference:
Duchêne, C., Bouly, JP., Pierella Karlusich, J.J. et al. ‘Diatom phytochromes integrate the underwater light spectrum to sense depth’, Nature (2024). DOI: 10.1038/s41586-024-08301-3
Article Source:
Press Release/Material by CNRS
Featured image credit: NOAA | Unsplash

At the Pic du Midi mountain observatory it is raining from all directions – ideal for exploring the pathways of arsenic in the atmosphere.
Tracing arsenic in rain reveals complex environmental pathwaysScience

Tracing arsenic in rain reveals complex environmental pathways

Researchers at ETH Zurich have uncovered new insights into how arsenic, a toxic trace element, travels through the atmosphere and interacts with biological systems. By…
Muser NewsDeskMuser NewsDeskJanuary 9, 2025 Full article
Image: AI art of Earth - climate change effects (s. science, climate, Muser)
Climate Science Digest: June 30, 2025Science

Climate Science Digest: June 30, 2025

Explore the latest insights from top science journals in the Muser Press daily roundup (June 30, 2025), featuring impactful research on climate change challenges. In…
Muser NewsDeskMuser NewsDeskJune 30, 2025 Full article
Image: supply chain representation
Warehousing industry increases health-harming pollutantsScience

Warehousing industry increases health-harming pollutants

First of a kind study shows an average 20% spike of nitrogen dioxide polluting the air for communities located near huge warehouses; people of color…
SourceSourceJuly 24, 2024 Full article