The tiny phytoplankton that drive oxygen production and carbon storage in Earth’s oceans are revealing how they navigate their ever-changing underwater world.

cnrs diatom res
Diatoms are unicellular photosynthetic algae, with a silicious skeleton. They belong to the phytoplankton family. Credit: © John Dolan/CNRS Images

Researchers from the CNRS and Sorbonne University have identified a critical mechanism: light-sensing molecules called phytochromes, embedded in the genomes of diatoms, a prominent group of phytoplankton. This discovery sheds light on the strategies microalgae use to adapt to turbulent aquatic environments and shifting light conditions.

Diatoms, like terrestrial plants, perform photosynthesis, contributing significantly to the planet’s oxygen production and carbon capture. However, maintaining this balance in the mixed layers of the ocean requires sophisticated adaptations.

Phytochromes act as “eyes” for these microalgae, detecting subtle changes in the light spectrum as it filters through the water column. By interpreting these variations, diatoms determine their vertical position and adjust their biological activities, particularly photosynthesis.

The study, published in Nature, shows the role of phytochromes in high-latitude, temperate, and polar regions – areas prone to strong water mixing and marked by dramatic seasonal light variations. Through environmental genomic data from the Tara Oceans marine sampling campaigns, researchers discovered that phytochromes are exclusively present in diatoms inhabiting zones beyond the Tropics of Cancer and Capricorn. These regions’ pronounced seasonality appears to demand a mechanism for tracking seasonal changes, with phytochromes enabling diatoms to measure shifts in day length.

This revelation not only illuminates the ways phytoplankton perceive and respond to their environment but also highlights their adaptability in the face of environmental changes. By integrating data from both laboratory experiments and natural marine settings, the research paves the way for a deeper understanding of marine ecosystems and their resilience in a rapidly changing world.

Journal Reference:
Duchêne, C., Bouly, JP., Pierella Karlusich, J.J. et al. ‘Diatom phytochromes integrate the underwater light spectrum to sense depth’, Nature (2024). DOI: 10.1038/s41586-024-08301-3
Article Source:
Press Release/Material by CNRS
Featured image credit: NOAA | Unsplash

The reaction setup used to transform carbon dioxide with precisely layered catalysts
Innovative catalyst layering unlocks new potential in sustainable fuel productionScience

Innovative catalyst layering unlocks new potential in sustainable fuel production

EPFL chemical engineers have developed a way to build metal clusters – with near atomic precision – in a method that has the potential to…
SourceSourceOctober 31, 2024 Full article
Image: The ocean under blue sky
Much of the Nord Stream gas remained in the seaScience

Much of the Nord Stream gas remained in the sea

By University of Gothenburg Much of the methane released into the southern Baltic Sea from the Nord Stream gas pipeline has remained in the water.…
SourceSourceJune 19, 2024 Full article
People are altering decomposition rates in waterwaysScience

People are altering decomposition rates in waterways

By Leigh Hataway, University of Georgia Faster decomposition could exacerbate greenhouse gas emissions, threaten biodiversity Humans may be accelerating the rate at which organic matter…
SourceSourceMay 31, 2024 Full article