Researchers at McGill University have developed an innovative process that utilizes sunlight to convert methane and carbon dioxide – two potent greenhouse gases – into valuable chemicals. This breakthrough could help mitigate climate change and offer a sustainable method for producing industrial products.

The light-driven chemical process transforms methane and carbon dioxide into green methanol and carbon monoxide, both crucial in the chemical and energy sectors.

“Imagine a world where the exhaust from your car or emissions from a factory could be transformed, with the help of sunlight, into clean fuel for vehicles, the building blocks for everyday plastics, and energy stored in batteries,” said Hui Su, co-first author and Postdoctoral Fellow at McGill’s Department of Chemistry.

The research, published in Nature Communications, is inspired by natural processes like photosynthesis.

In this method, a catalyst composed of gold, palladium, and gallium nitride, when exposed to sunlight, facilitates a reaction that adds an oxygen atom from carbon dioxide to methane, producing green methanol. Carbon monoxide is also generated as a byproduct.

Chao-Jun Li, lead author and Distinguished James McGill Professor, emphasized the process’s sustainability, noting it works at room temperature and avoids the harsh conditions required in other methods.

“By tapping into the abundant energy of the sun, we can essentially recycle two greenhouse gases into useful products. The process works at room temperature and doesn’t require the high heat or harsh chemicals used in other chemical reactions,” said Li.

This advancement, supported by several Canadian research programs, offers a potential pathway to achieve Canada’s net-zero emissions target by 2050.

Journal Reference:
Su, H., Han, JT., Miao, B., Salehi, M., Li, CJ. ‘Photosynthesis of CH3OH via oxygen-atom-grafting from CO2 to CH4 enabled by AuPd/GaN’, Nature Communications 15, 6435 (2024). DOI: 10.1038/s41467-024-50801-3

Article Source:
Press Release/Material by McGill University
Featured image credit: Freepik


Image: medicine, pills, medicaments
Wastewater plants fail to remove common drugsScience

Wastewater plants fail to remove common drugs

Common antidepressants, antibiotics and allergy drugs are being discharged into waterways, as conventional treatment fails to remove them Summary: Municipal wastewater treatment plants are failing…
SourceSourceOctober 13, 2025 Full article
Ozone monitoring sees significant advances, researchers reportScience

Ozone monitoring sees significant advances, researchers report

Recent developments in the monitoring of tropospheric ozone, a critical component in the formation of smog, show promising advancements, according to a study led by…
Adrian AlexandreAdrian AlexandreAugust 29, 2024 Full article
New model enhances accuracy of flash flood predictionsScience

New model enhances accuracy of flash flood predictions

An international team of climate scientists has developed a new approach that offers significant advancements in predicting life-threatening flash floods triggered by extreme rainfall. This…
Adrian AlexandreAdrian AlexandreAugust 30, 2024 Full article