Skip to main content

Researchers at McGill University have developed an innovative process that utilizes sunlight to convert methane and carbon dioxide – two potent greenhouse gases – into valuable chemicals. This breakthrough could help mitigate climate change and offer a sustainable method for producing industrial products.

The light-driven chemical process transforms methane and carbon dioxide into green methanol and carbon monoxide, both crucial in the chemical and energy sectors.

“Imagine a world where the exhaust from your car or emissions from a factory could be transformed, with the help of sunlight, into clean fuel for vehicles, the building blocks for everyday plastics, and energy stored in batteries,” said Hui Su, co-first author and Postdoctoral Fellow at McGill’s Department of Chemistry.

The research, published in Nature Communications, is inspired by natural processes like photosynthesis.

In this method, a catalyst composed of gold, palladium, and gallium nitride, when exposed to sunlight, facilitates a reaction that adds an oxygen atom from carbon dioxide to methane, producing green methanol. Carbon monoxide is also generated as a byproduct.

Chao-Jun Li, lead author and Distinguished James McGill Professor, emphasized the process’s sustainability, noting it works at room temperature and avoids the harsh conditions required in other methods.

“By tapping into the abundant energy of the sun, we can essentially recycle two greenhouse gases into useful products. The process works at room temperature and doesn’t require the high heat or harsh chemicals used in other chemical reactions,” said Li.

This advancement, supported by several Canadian research programs, offers a potential pathway to achieve Canada’s net-zero emissions target by 2050.

Journal Reference:
Su, H., Han, JT., Miao, B., Salehi, M., Li, CJ. ‘Photosynthesis of CH3OH via oxygen-atom-grafting from CO2 to CH4 enabled by AuPd/GaN’, Nature Communications 15, 6435 (2024). DOI: 10.1038/s41467-024-50801-3

Article Source:
Press Release/Material by McGill University
Featured image credit: Freepik


Image: Close-up on bacteria (s. Ancient bacteria reveal a unique way to generate energy without oxygen)
Ancient bacteria reveal a unique way to generate energy without oxygenScience

Ancient bacteria reveal a unique way to generate energy without oxygen

Scientists at Goethe University discover how the oldest enzyme of cellular respiration works – potential applications in removing CO₂ from exhaust gases Summary: Long before…
SourceSourceMarch 18, 2025 Full article
Breathtaking sunset in the evening
Most existing heat wave indices fail to capture heatwave severityNewsScience

Most existing heat wave indices fail to capture heatwave severity

By Cell Press Even though climate change is bringing more frequent and severe heat waves, there is no standard, global way to measure heat-wave severity,…
SourceSourceAugust 7, 2024 Full article
New field experiments uncover how plant clocks adapt to natural environmentsScience

New field experiments uncover how plant clocks adapt to natural environments

A collaborative study between researchers from the UK and Japan has shed new light on how plant biological clocks function in natural environments. Traditionally, much…
Adrian AlexandreAdrian AlexandreAugust 23, 2024 Full article