A recent study published in Nature Communications highlights a previously underestimated consequence of large-scale deforestation: reduced cloud cover, which amplifies global warming.

Researchers from Leipzig University and Sun Yat-sen University in China have found that deforestation not only releases carbon dioxide but also diminishes low-level and tropical high-level clouds, significantly altering the climate’s radiative balance.

The study, led by Dr. Hao Luo from the Institute for Meteorology at Leipzig University, demonstrates that forests – due to their darker surfaces – absorb more sunlight, leading to a cooling effect. However, deforestation reduces cloud formation, which in turn nearly halves this cooling effect.

“Low-level clouds have a cooling effect on the climate because they reflect a lot of sunlight,” said Professor Johannes Quaas, co-author and a researcher at Leipzig University and the German Centre for Integrative Biodiversity Research.

The research is based on climate model simulations and reanalyses of deforestation scenarios. The results show that the decreased cloud cover is linked to changes in surface turbulent heat fluxes, which reduce moisture and uplift – key drivers of cloud formation. This effect partially offsets the cooling influence of increased surface albedo in deforested areas, where lighter surfaces reflect more sunlight. “The decreased cloud cover can be explained by alterations in surface turbulent heat flux, which diminishes uplift and moisture to varying extents,” says Professor Quaas.

While the biophysical effects of forests on the climate have been recognized, the impact of deforestation on clouds remains less understood. This research sheds new light on the interaction between land use changes and atmospheric processes.

The researchers emphasize the need for further investigation into how different meteorological processes in forested versus deforested areas impact clouds and radiative balance. They note that this aspect of climate science has not been fully explored. Ongoing studies are also looking into the role of forest biodiversity in cloud formation and its potential climate implications.

Journal Reference:
Luo, H., Quaas, J. & Han, Y. ‘Decreased cloud cover partially offsets the cooling effects of surface albedo change due to deforestation’, Nature Communications 15, 7345 (2024). DOI: 10.1038/s41467-024-51783-y

Article Source:
Press Release/Material by  Leipzig University
Featured image credit: Mike van Schoonderwalt | Pexels

Image: SWOT
Small ocean currents found to pack major climate powerScience

Small ocean currents found to pack major climate power

Texas A&M's Jinbo Wang and an international team use SWOT satellite data to uncover powerful submesoscale eddies, reshaping our understanding of ocean-climate dynamics Summary: Some…
SourceSourceJune 2, 2025 Full article
Image: Earth networks
Science’s key role in addressing global crisesNewsScience

Science’s key role in addressing global crises

A new paper published in PLOS Sustainability and Transformation highlights the critical role of science in tackling global crises, calling for a more engaged and…
Adrian AlexandreAdrian AlexandreOctober 23, 2024 Full article
What is the carbon footprint of a house in Japan?Science

What is the carbon footprint of a house in Japan?

By Kyushu University Researchers identify the emission hotspots in the supply chain when building a house in Japan Researchers at Kyushu University have published a…
SourceSourceMay 20, 2024 Full article