Skip to main content

Researchers at the University of Notre Dame have developed a tool to analyze embodied carbon in over one million buildings in Chicago. Embodied carbon refers to the greenhouse gas emissions associated with the entire life cycle of building materials, including their extraction, production, transportation, construction, and eventual demolition.

Notre Dame researchers created the first ever visual analysis tool to evaluate embodied carbon in more than 1 million buildings in Chicago
Notre Dame researchers created the first ever visual analysis tool to evaluate embodied carbon in more than 1 million buildings in Chicago. Credit: University of Notre Dame

While operational emissions have traditionally been the focus in reducing carbon footprints, Ming Hu, the associate dean for research, scholarship and creative work in Notre Dame’s School of Architecture, emphasizes the importance of considering embodied carbon in existing buildings.

“We feel this is a more clear, direct way to help policymakers or laypeople make informed decisions,” Hu said.

This tool aims to guide urban planners and policymakers by visualizing the embodied carbon embedded in city structures, allowing them to assess whether retrofitting or demolishing buildings is the best environmental option. The research reveals that extending a building’s lifespan from 50 to 75 years, while reducing its size by 20%, can lower emissions by two-thirds.

Hu, along with civil and environmental engineering graduate student Siavash Ghorbany, identified 157 distinct architectural housing types in Chicago, creating a visual analysis tool that provides insights into geographic areas with high emissions.

Their analysis shows that reusing buildings always results in lower carbon emissions compared to constructing new ones, even if the new buildings are more energy-efficient. “The ‘payback period’ for constructing a new building is typically 20 years due to the high level of greenhouse gas emissions created by its construction,” Hu noted. “So, if we can extend a building’s life cycle to 70 or 80 years, then reusing the existing building definitely makes more sense.”

The research, which was funded by the National Science Foundation, leverages machine learning and artificial intelligence to integrate multiple datasets, including the National Structure Inventory and Cook County Open Data, to map out the city’s embodied carbon landscape.

Ghorbany emphasized the tool’s accessibility, saying, “We created this one so that you can try different scenarios by selecting which types of archetypes you want to see and filtering them by year or types of emissions. I hope that in the future, cities will be able to use this tool to reduce their carbon emissions so that we can help reduce climate change and the impacts we’re seeing from it.”

Looking ahead, the researchers plan to scale their project to evaluate embodied carbon across cities in the U.S., offering a crucial tool for urban planners aiming to mitigate climate change. Along with environmental benefits, Hu stressed the cultural importance of the research, noting that preserving older buildings also maintains the architectural character of cities.

Journal Reference:
Ghorbany, S. and Hu, M. ‘Urban embodied carbon assessment: methodology and insights from analyzing over a million buildings in Chicago’, Carbon Management 15(1) (2024). DOI: 10.1080/17583004.2024.2382993

Article Source:
Press Release/Material by University of Notre Dame
Featured image credit: TravelScape | Freepik

Small iceberg floating in ocean water under a bright sky with the Sun visible above - climate change effects (s. science, climate, Muser)
Climate Science Digest: April 30, 2025Science

Climate Science Digest: April 30, 2025

Explore the latest insights from top science journals in the Muser Press daily roundup, featuring impactful research on climate change challenges. In brief: Researchers use…
Muser NewsDeskMuser NewsDeskApril 30, 2025 Full article
Researchers analyzed sediment core samples collected by D/V JOIDES Resolution near Cape Town, South Africa. Their findings uncovered details about the changes in deep ocean temperature and salinity, as well as the mixing histories of waters originating in both the northern and southern hemispheres. Credit: Sophie Hines | ©Woods Hole Oceanographic Institution
Ancient ocean currents offer clues to Earth’s Ice Age cyclesNewsScience

Ancient ocean currents offer clues to Earth’s Ice Age cycles

About a million years ago, Earth’s ice age cycles underwent a dramatic shift, marking what scientists call the Mid-Pleistocene Transition (MPT). This period has long…
Adrian AlexandreAdrian AlexandreNovember 8, 2024 Full article
A 19th-century citizen science project reveals climate change impact on plant cyclesScience

A 19th-century citizen science project reveals climate change impact on plant cycles

In 1887, Groundhog Day began with a whimsical attempt to predict spring’s arrival using a rodent’s shadow, but scientific forecasting of seasonal changes has struggled…
SourceSourceDecember 17, 2024 Full article