Skip to main content

Recent research led by geologists at the University of Utah sheds light on how ancient climate change, occurring 50 million years ago, can inform our understanding of today’s rapidly shifting climate.

The study, published in the Proceedings of the National Academy of Sciences (PNAS), explores how Earth’s climate was affected by massive carbon dioxide (CO₂) emissions during the transition between the Paleocene and Eocene epochs, a period marked by significant global warming events.

The focus of the research is on two “thermal maxima” – the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM-2) – that occurred approximately 56 and 54 million years ago, respectively.

These events saw dramatic increases in global temperatures due to large-scale CO₂ emissions, providing a potential analog for the current anthropogenic climate change driven by human activities.

“The main reason we are interested in these global carbon release events is because they can provide analogs for future change,” said Dustin Harper, the study’s lead author and a postdoctoral researcher at the University of Utah’s Department of Geology & Geophysics. The study aims to compare ancient CO₂ emissions with today’s levels to forecast potential future scenarios.

Image: Images of foraminifera fossils created by a scanning electronic microscope (s. ancient climate change)
Images of foraminifera fossils created by a scanning electronic microscope. Credit: Dustin Harper

To reconstruct past climate conditions, the research team analyzed microscopic fossils called foraminifera, which are shelled, single-cell organisms similar to plankton. These fossils, extracted from undersea drilling cores taken from the Shatsky Rise in the Pacific Ocean, provide a detailed record of ocean chemistry and CO₂ levels at the time they were formed. The team employed a sophisticated statistical model to link sea surface temperatures with atmospheric CO₂ levels over a 6-million-year period.

Their findings reveal a close relationship between rising CO₂ levels and increasing global temperatures, echoing current trends driven by human emissions. Co-author Gabriel Bowen, a professor of geology & geophysics at the University of Utah, emphasized the study’s relevance to understanding climate sensitivity: “What we see in this study is that there’s some variation… but overall, we see a common range of climate sensitivities.”

While today’s carbon emissions are occurring 4 to 10 times faster than during these ancient events, the total amount of carbon released during those periods is similar to the levels projected for current human-induced emissions. This comparison underscores the importance of studying these past events to anticipate the potential long-term impacts of today’s climate change.

“These events might represent a mid- to worst-case scenario kind of case study,” Harper noted, highlighting the potential insights that ancient climate changes can offer for predicting future environmental changes.

***

The study was conducted in collaboration with researchers from Columbia University, University of California Santa Cruz, Vassar College, Utah State University, and University of Hawaii. The research was funded by the National Science Foundation.

Journal Reference:
Dustin T. Harper, Bärbel Hönisch, Gabriel J. Bowen, Richard E. Zeebe, Laura L. Haynes, Donald E. Penman, and James C. Zachos, ‘Long- and short-term coupling of sea surface temperature and atmospheric CO₂ during the late Paleocene and early Eocene’, Proceedings of the National Academy of Sciences (2024). DOI: 10.1073/pnas.2318779121

Article Source:
Press Release/Material by University of Utah
Featured image credit: Alejandro Quintanar | Pexels

Image: A satellite in orbit with the planet earth in the background
Satellite Navigation Revolutionizes Sea Ice Thickness MappingClimateScience

Satellite Navigation Revolutionizes Sea Ice Thickness Mapping

By Aerospace Information Research Institute, Chinese Academy of Sciences A cutting-edge study harnesses the power of spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) technology to accurately…
SourceSourceJune 24, 2024 Full article
Concept portrait of overstimulated person: repetition, confusion, belief
Repetition boosts belief in climate-skeptical claims, even among climate science endorsersScience

Repetition boosts belief in climate-skeptical claims, even among climate science endorsers

A single repetition increased the claims’ perceived truth for the strongest climate science supporters surveyed. By PLOS ONE Climate science supporters rated climate-skeptical statements as…
SourceSourceAugust 7, 2024 Full article
Image: Aerial view of a tropical rainforest
Tropical forests struggle to keep pace with climate changeScience

Tropical forests struggle to keep pace with climate change

A major new study has revealed that tropical forests across the Americas are not adapting quickly enough to climate change, raising concerns about their long-term…
SourceSourceApril 4, 2025 Full article