Skip to main content

Ecosystem carbon dioxide emissions are known to be higher in warmer climates, leading to concerns that global warming could accelerate emissions and intensify the greenhouse effect, thereby worsening climate change.

This acceleration only occurs in environments where there is sufficient moisture, according to a study published in Nature Ecology & Evolution by researchers from Stockholm University.

“All organisms need water to live and both plants and soil microorganisms lower their metabolism in dry conditions. As a result, ecosystems release less carbon dioxide when soils are dry,” explained Stefano Manzoni, an associate professor at the Department of Physical Geography, Stockholm University, and co-author of the study.

While most research has focused on temperature’s role in increasing metabolic rates and emissions, this new study emphasizes the critical role of water in this process. It reveals for the first time that there are specific precipitation thresholds necessary to keep soil moist enough to sustain the positive feedback loop from increased ecosystem metabolism.

Once precipitation falls below these thresholds, warming alone will not further increase metabolic rates or exacerbate climate change. These thresholds vary globally, with warmer regions requiring more precipitation to maintain adequate moisture in ecosystems. Therefore, the water cycle plays a crucial role in determining carbon dioxide emissions.

This discovery has significant implications, as many regions may fall short of the necessary precipitation thresholds, making them less responsive to warming because water becomes the most limiting factor.

“To refine our understanding of where and when water becomes limiting, as well as the net impact on carbon dioxide emissions, we need to focus our research efforts on hydroclimate and future water cycle changes,” concluded co-author Jerker Jarsjö, a professor at the Department of Physical Geography, Stockholm University.

Journal Reference:
Zhang, Q., Yi, C., Destouni, G. et al. ‘Water limitation regulates positive feedback of increased ecosystem respiration’, Nature Ecology & Evolution (2024). DOI: 10.1038/s41559-024-02501-w

Article Source:
Press Release/Material by Stockholm University
Featured image: Respiration from dry ecosystems is less sensitive to temperature Credit: wirestock | Freepik

Image: Cows
Seaweed supplement slashes methane emissions in grazing cattle by nearly 40%Climate

Seaweed supplement slashes methane emissions in grazing cattle by nearly 40%

In an important milestone for sustainable livestock farming, researchers at the University of California, Davis, have shown that feeding grazing beef cattle a seaweed supplement…
Muser NewsDeskMuser NewsDeskDecember 3, 2024 Full article
Image: Scientists in a field
Bridging scales: A hybrid model for disturbed complex systemsClimate

Bridging scales: A hybrid model for disturbed complex systems

Complex systems, from ecosystems and economies to pandemics and thermodynamics, have long challenged scientists with their intricate interplay of micro- and macro-level dynamics. Traditional models…
Adrian AlexandreAdrian AlexandreDecember 8, 2024 Full article
Temperature at La Palma Observatory Rose 1.1ºC in 20 years, doubling climate model predictionsClimate

Temperature at La Palma Observatory Rose 1.1ºC in 20 years, doubling climate model predictions

A detailed analysis of 20 years of weather data from the MAGIC Telescopes site at La Palma’s Roque de los Muchachos Observatory revealed that the…
Muser NewsDeskMuser NewsDeskOctober 31, 2024 Full article