Ecosystem carbon dioxide emissions are known to be higher in warmer climates, leading to concerns that global warming could accelerate emissions and intensify the greenhouse effect, thereby worsening climate change.

This acceleration only occurs in environments where there is sufficient moisture, according to a study published in Nature Ecology & Evolution by researchers from Stockholm University.

“All organisms need water to live and both plants and soil microorganisms lower their metabolism in dry conditions. As a result, ecosystems release less carbon dioxide when soils are dry,” explained Stefano Manzoni, an associate professor at the Department of Physical Geography, Stockholm University, and co-author of the study.

While most research has focused on temperature’s role in increasing metabolic rates and emissions, this new study emphasizes the critical role of water in this process. It reveals for the first time that there are specific precipitation thresholds necessary to keep soil moist enough to sustain the positive feedback loop from increased ecosystem metabolism.

Once precipitation falls below these thresholds, warming alone will not further increase metabolic rates or exacerbate climate change. These thresholds vary globally, with warmer regions requiring more precipitation to maintain adequate moisture in ecosystems. Therefore, the water cycle plays a crucial role in determining carbon dioxide emissions.

This discovery has significant implications, as many regions may fall short of the necessary precipitation thresholds, making them less responsive to warming because water becomes the most limiting factor.

“To refine our understanding of where and when water becomes limiting, as well as the net impact on carbon dioxide emissions, we need to focus our research efforts on hydroclimate and future water cycle changes,” concluded co-author Jerker Jarsjö, a professor at the Department of Physical Geography, Stockholm University.

Journal Reference:
Zhang, Q., Yi, C., Destouni, G. et al. ‘Water limitation regulates positive feedback of increased ecosystem respiration’, Nature Ecology & Evolution (2024). DOI: 10.1038/s41559-024-02501-w

Article Source:
Press Release/Material by Stockholm University
Featured image: Respiration from dry ecosystems is less sensitive to temperature Credit: wirestock | Freepik

Image: a group of icebergs floating on top of a body of water (s. Svalbard and Jan Mayen)
Impact of ‘cryosphere meltdown’ on Arctic marine carbon cycles and ecosystemsClimate

Impact of ‘cryosphere meltdown’ on Arctic marine carbon cycles and ecosystems

‘Cryosphere meltdown’ will impact Arctic marine carbon cycles and ecosystems, new study warns Summary: The Arctic is undergoing some of the most dramatic environmental changes…
SourceSourceApril 28, 2025 Full article
Hourglass with Earth inside with an glacier melting above - global warming concept
Last 2 years crossed 1.5C global warming limit: EU monitorClimate

Last 2 years crossed 1.5C global warming limit: EU monitor

Paris, France - The last two years exceeded on average a critical warming limit for the first time as global temperatures soar "beyond what modern…
SourceSourceJanuary 10, 2025 Full article
Image: 3d render thermometer show hot or cold temperature
Why do you keep your house so cold? Science says: Ask your parentsClimateScience

Why do you keep your house so cold? Science says: Ask your parents

The temperature of your childhood home, among other factors, may help predict your thermostat settings. Childhood home temperature and community connectedness can help predict how…
SourceSourceJuly 4, 2024 Full article