Skip to main content

By Jess Whitty | La Trobe University

Researchers at La Trobe University’s Centre for Freshwater Ecosystems have exposed the hidden consequences of climate change on Alpine stream ecosystems, which could see an earlier emergence of insects.

The study, published in Global Change Biology, led by Senior Lecturer in Environment and Genetics Dr Michael Shackleton, focused on streams around Falls Creek and projected significant alterations in water temperatures from climate warming and its impact on aquatic life.

It was found that the rate at which temperature accumulates over the years will increase, which likely influences how organisms grow and develop.

“These shifts may have significant impacts on aquatic organisms, particularly those emerging from alpine streams in Autumn and the food webs they service,” Dr Shackleton said.

“In the future, late-season organisms might emerge from river systems into air temperatures up to 12 degrees higher than what they currently experience.

“As a result, we expect insects, in particular, will emerge earlier in the year because they will have gained enough heat energy to become adults earlier on.”

Researchers used sophisticated modelling techniques and analysed past water temperature data to predict future stream water temperatures under climate change scenarios.

The study urgently calls for proactive conservation efforts to mitigate the impacts of climate change on vulnerable ecosystems.

“As warmer climates influence the metabolism of insects, the availability of food resources and egg-laying locations, and reproductive potential, there are profound implications for ecosystem structures and function,” Dr Shackleton said.

“Aquatic species maturing and moving on to land represents an important flux of energy and nutrients, however changes to the life cycle of varying animals may separate predator to prey interactions.

“This earlier emergence of insects is just one example of how climate change is reshaping our natural world.”

More information: M. E. Shackleton, A. R. Siebers, P. J. Suter, O. Lines, A. Holland, J. W. Morgan, E. Silvester, ‘Out of the frying pan into the fire: Predicted warming in alpine streams suggests hidden consequences for aquatic ectotherms’, Global Change Biology (vol. 30, Iss 6; 2024); DOI: 10.1111/gcb.17364. La Trobe University Press Release. Featured image credit: wirestock | Freepik

Graphic news (s. climate, science, research, scientists. emission targets, floods, environment)
EU tells COP30 carbon pricing is needed ‘as quickly as possible’News

EU tells COP30 carbon pricing is needed ‘as quickly as possible’

Belém, Brazil | AFP The European Union's climate chief told COP30 on Monday it was time to impose the broadest possible carbon pricing scheme, defending an…
SourceSourceNovember 17, 2025 Full article
Satellite Image: phytoplankton bloom in the Barents Sea (July, 2021)
Arctic phytoplankton blooms projected to begin earlier as climate change intensifiesClimate

Arctic phytoplankton blooms projected to begin earlier as climate change intensifies

Researchers find that climate change will push Arctic phytoplankton blooms to start earlier and last longer by 2100 Summary: Arctic ecosystems may face a significant…
SourceSourceNovember 21, 2025 Full article
Image: A tree in desert
World Drought Atlas highlights global risks and solutions for a resilient futureClimate

World Drought Atlas highlights global risks and solutions for a resilient future

Droughts are becoming one of the most pressing global challenges, with impacts expected to affect three-quarters of the world’s population by 2050. In response, the…
Muser NewsDeskMuser NewsDeskDecember 2, 2024 Full article