By Chinese Academy of Sciences

Forests, which cover 31% of the Earth’s land surface, are essential for maintaining biodiversity and regulating the climate. However, climate change poses a significant challenge to forest growth, with different tree species responding very differently to extreme drought conditions.

As the frequence and intensity of extreme drought events increase under global warming, there is an urgent need for in-depth research into the climate adaptability of different tree species, in order to take effective measures to protect forest ecosystems and combat the effects of global warming.

According to a study published in Global Ecology and Conservation, a research team led by Profs. CAI Qiufang and LIU Yu from the Institute of Earth Environment of the Chinese Academy of Sciences (CAS) has investigated the changes in Pinus tabulaeformis Carr. and Tsuga chinensis Pritz. on the southern slopes of the Qinling Mountains (SSQM) in the context of global warming. The Qinling Mountains mark the southernmost distribution boundary for natural P. tabulaeformis and the northernmost boundary for natural T. chinensis.

1 s2.0 S2351989424002038 gr1 lrg res
The study was conducted in Chenggu city (33.32°N, 107.15°E) on the southern slope of the QLM and northern edge of the Hanzhong Basin. Location of the sampling site (red star), meteorological stations (circles), and grid data (crosses). Source: DOI: 10.1016/j.gecco.2024.e02999 | CC-BY-NC-ND

The researchers found that the climate response patterns of P. tabulaeformis and T. chinensis on the SSQM have undergone qualitative changes with global warming. The sensitivity of P. tabulaeformis to temperature and precipitation has decreased over time, while T. chinensis has become more dependent on hydrological conditions.

During extreme drought events, P. tabulaeformis shows a stronger drought resistance compared to T. chinensis. The stronger drought resistance of P. tabulaeformis implies a greater ability to adapt to the warming and drying climate trend, potentially giving it a greater advantage in the current forest ecological composition. In contrast, T. chinensis is less adaptable.

This study highlights that different tree species in the same habitat exhibit significant heterogeneity in growth-climate response, and forest management and conservation measures should be species-specific.

More information: Mei Xie, Qiufang Cai, Yu Liu, Meng Ren, Qiuyue Zhou, Hanyu Zhang, Kebayier Meng, ‘Assessing climatic response and drought resilience in growth of Pinus tabulaeformis Carr. and Tsuga chinensis Pritz. on the southern slope of the Qinling Mountains’, Global Ecology and Conservation (2024, Volume 53, e02999); DOI: 10.1016/j.gecco.2024.e02999. CAS – Press Release. Featured image credit: Caitriana Nicholson | CC BY-SA 2.0, via Wikimedia Commons

Image: Microscopic pathogens (3D art)
Soil bacteria respire more CO2 after eating non-sugar organic matterScience

Soil bacteria respire more CO2 after eating non-sugar organic matter

By Amanda Morris, Northwestern University When soil microbes eat plant matter, the digested food follows one of two pathways. Either the microbe uses the food…
SourceSourceJune 12, 2024 Full article
Glacier
UC Irvine-led team uncovers ‘vigorous melting’ at Antarctica’s Thwaites GlacierScience

UC Irvine-led team uncovers ‘vigorous melting’ at Antarctica’s Thwaites Glacier

By University of California - Irvine A team of glaciologists led by researchers at the University of California, Irvine used high-resolution satellite radar data to…
SourceSourceMay 23, 2024 Full article
Could stem cell transplants rescue corals from climate-driven collapse?NewsScience

Could stem cell transplants rescue corals from climate-driven collapse?

Climate change continues to devastate coral reefs worldwide, with rising sea temperatures triggering widespread coral bleaching and death. Researchers from Ben-Gurion University of the Negev,…
Muser NewsDeskMuser NewsDeskDecember 17, 2024 Full article