Skip to main content

By Helmholtz Association of German Research Centres

Germany aims to be climate neutral by 2045. In order to achieve this goal, greenhouse gas emissions must be greatly reduced and effective measures to remove carbon dioxide (CO2) from the atmosphere established. But which methods for the removal, binding, and storage of CO2 can be readily implemented in Germany over the next two decades? An interdisciplinary research team led by the Helmholtz Centre for Environmental Research (UFZ) and the GEOMAR Helmholtz Centre for Ocean Research Kiel has now carried out a feasibility study for 14 different carbon dioxide removal (CDR) options for Germany, taking into account ecological, technological, economic, social, institutional, and systemic aspects. The researchers hope that the results of their study will help to drive forward decision-making processes and strategies in politics, business, and technological development. The study was recently published in the specialist magazine Earth’s Future.

In order for Germany to become climate neutral by 2045, CO2 emissions must first be drastically and permanently reduced. However, CDR measures alone cannot remove the large quantities of CO2 that are emitted in Germany. It is assumed that they can offset only approx. 5-15% of the current emissions.

But how effective and efficient are the various possible measures? What are the hurdles to implementing them? What are the costs? How environmentally friendly are they?

The research team investigated these and other questions in its latest study in which it analysed the feasibility of 14 CDR measures that could be implemented in Germany. The measures include direct air carbon capture and storage (DACCS) and bioenergy with carbon capture and storage (BECCS) as well as measures to increase carbon uptake by ecosystems.

For their investigations, the researchers used an evaluation framework they had jointly developed in a previous study. Six different dimensions are assessed: ecological, technological, economic, social, institutional, and systemic.

“For a good and comparable assessment of the feasibility, taking into account the risks and opportunities of different CDR measures, various aspects must be considered. Because these are not easy to keep track of and compare, we wanted to shed light on them with our study”, says Dr Malgorzata Borchers from the UFZ and co-first author of the study together with Dr Johannes Förster and Dr Nadine Mengis.

Within the framework of workshops in multidisciplinary teams of the Helmholtz Climate Initiative, the expertise of 28 co-authors was incorporated into the study. “We thus had an incredibly large pool of expert knowledge at our disposal. This enabled us to assess the current state of knowledge on the CDR methods analysed in our study”, says Mengis.

The researchers have presented their results in a clear evaluation matrix using a traffic light colour system. Red means that the hurdles to introducing a CDR measure are high in a certain area (e.g. ecological or economic). Yellow means they are medium, and green means they are low.

The study results show that the CDR measures with the lowest technological hurdles include mainly ecosystem-based measures such as the restoration of seagrass meadows, the cultivation of intermediate crops in agriculture, the rewetting of peatlands, and the reforestation of degraded land.

“Ecosystem-based measures are already being used to avoid emissions in particular. They also contribute to the removal of carbon dioxide from the atmosphere. However, the potential of these measures is limited because Germany is quite restricted in terms of area and because we cannot rewet peatlands or reforest large areas indefinitely”, says Förster. “Nevertheless, we should try to leverage these synergies. In order to achieve the climate target, it will be necessary to combine different CDR measures in a portfolio of climate protection measures”.

For measures with a higher CO2 removal potential such as BECCS, the traffic light colour in the evaluation matrix is red in many areas. “With technological CDR measures, the economic and institutional hurdles in particular are still quite high”, says Prof Daniela Thrän, who heads the Department of Bioenergy at the UFZ.

“Because there are regional differences in the feasibility and potential of these CDR measures, we believe that more practical experience is needed at the regional and local level in order to better understand how the technologies can be further developed and established as part of local value chains”.

In the evaluation matrix, there are also white spots, which indicate that there are currently no data available. “This is particularly the case with the social assessment aspects of the CDR measures. Further research is urgently needed. For example, on how the costs and disadvantages of CDR measures could be distributed fairly across society and how their implementation would benefit society as a whole”, says Mengis.

The scientists hope that their feasibility study for possible CDR measures in Germany can help decision-makers to better understand and categorise the complex information. This is the only way to set the right course for achieving the climate target for 2045.

(More information: Malgorzata Borchers et al, ‘A Comprehensive Assessment of Carbon Dioxide Removal Options for Germany’, Earth’s Future (2024). DOI: 10.1029/2023EF003986. Featured image: Using biomass from rewetted peatlands (f.i. Common reed Phragmites australis) for bioenegry together with carbon capture and storage could potentially also contribute to carbon dioxide removal. Credit: Tobias Dahms | AESA aerial 2018 | CC BY 4.0)

Microplastics detected in dolphin breath
Microplastics detected in dolphin breathScience

Microplastics detected in dolphin breath

U.S. researchers have found microplastic particles in the breath of wild bottlenose dolphins, suggesting that inhalation could be a significant route of exposure to these…
Adrian AlexandreAdrian AlexandreOctober 17, 2024 Full article
Grassland biodiversity faces faster decline from combined CO2 and nitrogen pollution
Grassland biodiversity faces faster decline from combined CO2 and nitrogen pollutionScience

Grassland biodiversity faces faster decline from combined CO2 and nitrogen pollution

A 24-year field study conducted in Minnesota has shed light on the compounded threat that nitrogen pollution and rising atmospheric carbon dioxide pose to grassland…
Adrian AlexandreAdrian AlexandreOctober 17, 2024 Full article
Grasslands respond rapidly to climate change
Grasslands respond rapidly to climate changeScience

Grasslands respond rapidly to climate change

In the world of ecosystems affected by climate change, grasslands are proving to be the fast responders. While forests may take years to reveal the…
Adrian AlexandreAdrian AlexandreOctober 16, 2024 Full article