Washington, United States | AFP

Commercial activities that damage sea floors are disrupting the oceans’ natural carbon capture capacity, with more research needed on their impact on carbon dioxide absorption, according to a new study Friday.

Scientists estimate around 30 percent of the carbon dioxide (CO2) released by humans is absorbed by the oceans, playing a crucial role in climate regulation and reducing the rate of global warming.

Image: Fishermen, Boat, Sea image, trawling, Oceans, emissions
Commercial fishing disrupts an ocean carbon sink driven by the seafloor. Credit: Marco Leeggangers | Pixabay

“There’s a lot of attention now to marine carbon dioxide removal,” said Sebastiaan van de Velde, the lead author of the study published in the journal Science Advances, in an interview with AFP.

“But we’re not asking the question, ‘What are we doing already that’s maybe not helping or reducing the oceans’ capacity to absorb CO2?'” he continued.

To research this, his team created models to simulate the impacts of bottom trawling and dredging — two commercial activities that disrupt the seabed — on the oceans’ CO2 absorption.

The analyses found multiple ways in which the practices reduce the alkalinity of the water, limiting the amount of carbon dioxide that can be absorbed.

The study estimated such activities reduce the amount of absorption between two and eight million tonnes (2.2 to 8.8 million tons) of CO2 annually.

Though the amount is relatively small compared to the total CO2 absorbed by oceans, it shows human activity contributes to reducing their “carbon sink” efficiency, the study found.

Van de Velde said the study also shows that by “managing our current economic activities a little bit better,” we could “make quite easy gains in terms of CO2 uptake.”

cha/eml/jgc/acb

© Agence France-Presse

Journal Reference:
Sebastiaan J. van de Velde, , Astrid Hylén, and Filip J. R. Meysman, ‘Ocean alkalinity destruction by anthropogenic seafloor disturbances generates a hidden CO2 emission’, Science Advances 11, eadp9112 (2025). DOI: 10.1126/sciadv.adp91

Article Source:
Press Release/Material by AFP
Featured image credit: Romello Williams | Unsplash

Grayscale Photo of Kids Helping a Child Drink from a Cup (climate effects - drought - heat)
Climate change widening Asia’s education gapClimate

Climate change widening Asia’s education gap

By Ranjit Devraj, SciDev.Net As temperatures in India’s national capital region hovered above a scorching 47 degrees Celsius in mid-May, authorities ordered the closure of…
SourceSourceJune 11, 2024 Full article
Image: Erzberg mine, Austria
Mineral shortages could threaten global low-carbon transition, study findsClimate

Mineral shortages could threaten global low-carbon transition, study finds

Climate change: Mineral shortages could limit the low-carbon transition Summary: The shift to a low-carbon energy future could be slowed by shortages of key minerals,…
SourceSourceAugust 10, 2025 Full article
Image: Elephants
Ocean cycles and climate shifts threaten the Serengeti’s wildlife and weather stabilityClimate

Ocean cycles and climate shifts threaten the Serengeti’s wildlife and weather stability

Climate change, intensified by oceanic cycles, is reshaping weather patterns across the Greater Mara-Serengeti ecosystem, spanning Kenya and Tanzania. Rising temperatures, driven by fluctuations in…
Adrian AlexandreAdrian AlexandreNovember 1, 2024 Full article