Skip to main content

Migrating bats across central Europe have been discovered using a surprising strategy to conserve energy: they ‘surf’ the warm winds of incoming storm fronts.

This behavior was tracked through innovative biotelemetry technology, shedding light on the complex relationship between weather patterns, bat physiology, and migration. The research, which involved tagging 71 female common noctule bats, reveals how these nocturnal travelers align their long journeys with favorable winds, an adaptation that helps them overcome energy challenges on their annual migrations.

Graphic
Bat movement over three days shows how many individuals departed on a night of lower air pressure (center). Credit: Hurme et al. (2025) | DOI: 10.1126/science.ade744 | Science

AAAS – A species of migrating bat “surfs” the warm winds of incoming storm fronts to conserve energy, according to a study that used tags to track the tiny animals on their long journeys across central Europe.

The findings offer new insights into how weather, physiology, and environmental factors shape bats’ seasonal migration patterns. The study is published in Science.

While bird migration is well-documented and studied, this is not the case for seasonal migration of bats – particularly the few long-distance, migratory species. These nocturnal travelers face substantial challenges, including high energy demands, anthropogenic threats, declining insect populations, and climate change.

Emerging evidence also shows shifts and reductions in migratory bat ranges. Migration decisions appear tied to local weather, especially favorable winds, which aid both foraging and migration. However, due to technological constraints, full bat migration patterns remain untracked, limiting insights into this increasingly vulnerable phenomenon.

To address these challenges, Edward Hurme and colleagues developed a new biotelemetry technology using 1.2-gram “Internet of Things” (IoT) tags, which were used to track 71 female common noctule bats (Nyctalus noctule) during their annual spring migration across central Europe.

These IoT tags, connected to a 0G wireless network, collect data on location, activity, and environmental temperature and transmit it daily without requiring the bats to be recaptured. Hurme et al. found that the bats traversed up to 1,116 km over 46 days, including single-night flights reaching 383 km – distances much farther than previously recorded. Many bats preferred to align journeys to their maternity roosts with warm nights and incoming storm fronts, surfing the tailwinds to reduce energy demands.

Yet these bats also exhibited unexpected flexibility in migration timing, demonstrating their ability to migrate across a range of conditions if required. However, females migrating toward the end of the season faced greater energy costs due to increasing maternity weight and less favorable winds and weather.

“Studies that leverage new technologies or approaches can reveal previously unknown aspects of these understudied animals,” writes Liam McGuire in a related Perspective. “But if action is not taken to address threats facing bat populations, they may not be around much longer to study.”

Journal Reference:
Edward Hurme et al. ‘Bats surf storm fronts during spring migration’, Science 387, 97-102 (2025). DOI: 10.1126/science.ade744
Article Source:
Press Release/Material by American Association for the Advancement of Science (AAAS)
Featured image credit: Clément Falize | Unsplash

“Geoengineering will not solve the problem of climate change”
“Geoengineering will not solve the problem of climate change”Science

“Geoengineering will not solve the problem of climate change”

Christoph Elhardt | ETH Zürich | MP - A team led by ETH climate researcher Sandro Vattioni has shown that diamond dust released in the…
SourceSourceOctober 24, 2024 Full article
Climate Science Digest: November 2, 2024
Small iceberg floating in ocean water under a bright sky with the Sun visible above - climate change effects (s. science, climate, Muser)
Climate Science Digest: November 2, 2024NewsScience

Climate Science Digest: November 2, 2024

Study explores soot and volatile particles' role in contrail formation and climate impact Contrails form across the sky behind a jet aircraft engine. Credit: Mateus…
Muser NewsDeskMuser NewsDeskNovember 2, 2024 Full article
Some coral reef fish show adaptability to rising temperatures, study finds
Image: Corals near Sir Bu Nair Island
Some coral reef fish show adaptability to rising temperatures, study findsScience

Some coral reef fish show adaptability to rising temperatures, study finds

Summary: Some coral reef fish in the Arabian Gulf, the world’s hottest sea, exhibit a slightly higher tolerance to temperature fluctuations than their counterparts in…
SourceSourceMarch 7, 2025 Full article