A study by researchers at Peking University’s Institute of Carbon Neutrality has unveiled how plants and animals respond differently to climate change in their seasonal biological cycles, or phenology. This large-scale analysis, led by Piao Shilong and Zhang Yao, highlights increasing mismatches between the two groups, raising concerns about the stability of ecosystems.

Published in Nature Ecology & Evolution, the study compiled an extensive dataset of phenological observations, including nearly half a million time series for plants (covering 1,629 species or genera across 248 events) and over 43,000 for animals, covering numerous species and events across four decades.

Global distribution of phenological records (s. climate, plants, animals)
Global distribution of phenological records. a. Distribution of plant phenology observation sites; b. Distribution of animal phenology observation sites; c. Plant species; d. Plant phenology categories; e. Animal classes; f. Animal phenology categories. Credit: Lang et al. (2024) | DOI: 10.1038/s41559-024-02597-0 | Nature Ecology & Evolution

The findings show that plants exhibit a stronger response to warming, with later seasonal events such as fruiting advancing significantly over time. Nearly 30% of these changes were influenced by earlier events in the same growing season, suggesting that warming effects accumulate and amplify as seasons progress.

By contrast, animals displayed weaker and more variable phenological shifts. While insects showed slight advancements, the timing of seasonal activities in birds, mammals, and amphibians was often delayed. This variability stems from animals’ reliance on environmental cues, such as temperature or resource availability, which weakens the link between successive phenological events.

The research highlights that these divergent mechanisms may lead to increasing asynchrony between plants and animals. For instance, earlier flowering in plants might not align with the activity of pollinators, potentially disrupting trophic interactions. Such imbalances could ripple through ecosystems, affecting their overall functioning and stability.

The paper, co-authored by Lang Weiguang, Piao Shilong, and Zhang Yao, indicates the need to understand these phenological divergences to predict ecosystem responses to ongoing climate warming. The researchers emphasize that addressing such asynchrony is crucial to safeguarding ecological balance in a warming world.

Journal Reference:
Lang, W., Zhang, Y., Li, X. et al. ‘Phenological divergence between plants and animals under climate change’, Nature Ecology & Evolution (2024). DOI: 10.1038/s41559-024-02597-0

Article Source:
Press Release/Material by Peking University
Featured image credit: kuritafsheen77 | Freepik

The summit of Huayna Potosí, a mountain near La Paz, Bolivia. Here we find the Zongo glacier, one of several in the tropical Andes Mountains, that are now smaller than at any point since the end of the last ice age 11,700 years ago, according to new research from UW–Madison researchers and their collaborators.
Retreat of tropical glaciers foreshadows changing climate’s effect on the global iceScienceClimate

Retreat of tropical glaciers foreshadows changing climate’s effect on the global ice

As they are in many places around the globe, glaciers perched high in the Andes Mountains are shrinking. Now, researchers at the University of Wisconsin–Madison…
SourceSourceAugust 2, 2024 Full article
Image: Lake Tahoe; a shot of the snow capped peaks of Tahoe
Travellers urged to keep it local in the name of sustainable tourismClimate

Travellers urged to keep it local in the name of sustainable tourism

By University of South Australia From rolling vineyards to stunning beaches, there’s no shortage of beauty to discover in our own backyards. A tourism expert…
SourceSourceJune 20, 2024 Full article
Image: Island plane summer travel water
Small island nations face growing flood risk despite minimal climate impactClimate

Small island nations face growing flood risk despite minimal climate impact

New research reveals that some of the world’s smallest nations, which contribute the least to climate change, are facing increasingly severe flooding risks. Residents of…
Muser NewsDeskMuser NewsDeskNovember 8, 2024 Full article