A study by researchers at Peking University’s Institute of Carbon Neutrality has unveiled how plants and animals respond differently to climate change in their seasonal biological cycles, or phenology. This large-scale analysis, led by Piao Shilong and Zhang Yao, highlights increasing mismatches between the two groups, raising concerns about the stability of ecosystems.

Published in Nature Ecology & Evolution, the study compiled an extensive dataset of phenological observations, including nearly half a million time series for plants (covering 1,629 species or genera across 248 events) and over 43,000 for animals, covering numerous species and events across four decades.

Global distribution of phenological records (s. climate, plants, animals)
Global distribution of phenological records. a. Distribution of plant phenology observation sites; b. Distribution of animal phenology observation sites; c. Plant species; d. Plant phenology categories; e. Animal classes; f. Animal phenology categories. Credit: Lang et al. (2024) | DOI: 10.1038/s41559-024-02597-0 | Nature Ecology & Evolution

The findings show that plants exhibit a stronger response to warming, with later seasonal events such as fruiting advancing significantly over time. Nearly 30% of these changes were influenced by earlier events in the same growing season, suggesting that warming effects accumulate and amplify as seasons progress.

By contrast, animals displayed weaker and more variable phenological shifts. While insects showed slight advancements, the timing of seasonal activities in birds, mammals, and amphibians was often delayed. This variability stems from animals’ reliance on environmental cues, such as temperature or resource availability, which weakens the link between successive phenological events.

The research highlights that these divergent mechanisms may lead to increasing asynchrony between plants and animals. For instance, earlier flowering in plants might not align with the activity of pollinators, potentially disrupting trophic interactions. Such imbalances could ripple through ecosystems, affecting their overall functioning and stability.

The paper, co-authored by Lang Weiguang, Piao Shilong, and Zhang Yao, indicates the need to understand these phenological divergences to predict ecosystem responses to ongoing climate warming. The researchers emphasize that addressing such asynchrony is crucial to safeguarding ecological balance in a warming world.

Journal Reference:
Lang, W., Zhang, Y., Li, X. et al. ‘Phenological divergence between plants and animals under climate change’, Nature Ecology & Evolution (2024). DOI: 10.1038/s41559-024-02597-0

Article Source:
Press Release/Material by Peking University
Featured image credit: kuritafsheen77 | Freepik

Image: Fire closure
Public more confident connecting increasing heat, wildfires with climate change than other extreme weather events, study findsClimateScience

Public more confident connecting increasing heat, wildfires with climate change than other extreme weather events, study finds

By Molly Rosbach, Oregon State University Oregon State University researchers found that U.S. adults are fairly confident in linking wildfires and heat to climate change,…
SourceSourceJune 14, 2024 Full article
Phytoplankton
Climate change may cause lake phytoplankton to become predatory, putting more CO2 into the atmosphereClimate

Climate change may cause lake phytoplankton to become predatory, putting more CO2 into the atmosphere

Energy transformersPredatorial plantsDual strategiesAccelerating climate change By Beatrix Beisner | The Conversation - Plankton — tiny organisms that are present in salt and freshwater — account…
SourceSourceJuly 12, 2024 Full article
Image: Agriculture IoT with rice field background
Agriculture’s path to becoming a carbon capture powerhouseClimate

Agriculture’s path to becoming a carbon capture powerhouse

The global food system is one of the largest contributors to greenhouse gas emissions, making the reduction of these emissions a top priority for climate…
Adrian AlexandreAdrian AlexandreSeptember 24, 2024 Full article