A study by researchers at Peking University’s Institute of Carbon Neutrality has unveiled how plants and animals respond differently to climate change in their seasonal biological cycles, or phenology. This large-scale analysis, led by Piao Shilong and Zhang Yao, highlights increasing mismatches between the two groups, raising concerns about the stability of ecosystems.

Published in Nature Ecology & Evolution, the study compiled an extensive dataset of phenological observations, including nearly half a million time series for plants (covering 1,629 species or genera across 248 events) and over 43,000 for animals, covering numerous species and events across four decades.

Global distribution of phenological records (s. climate, plants, animals)
Global distribution of phenological records. a. Distribution of plant phenology observation sites; b. Distribution of animal phenology observation sites; c. Plant species; d. Plant phenology categories; e. Animal classes; f. Animal phenology categories. Credit: Lang et al. (2024) | DOI: 10.1038/s41559-024-02597-0 | Nature Ecology & Evolution

The findings show that plants exhibit a stronger response to warming, with later seasonal events such as fruiting advancing significantly over time. Nearly 30% of these changes were influenced by earlier events in the same growing season, suggesting that warming effects accumulate and amplify as seasons progress.

By contrast, animals displayed weaker and more variable phenological shifts. While insects showed slight advancements, the timing of seasonal activities in birds, mammals, and amphibians was often delayed. This variability stems from animals’ reliance on environmental cues, such as temperature or resource availability, which weakens the link between successive phenological events.

The research highlights that these divergent mechanisms may lead to increasing asynchrony between plants and animals. For instance, earlier flowering in plants might not align with the activity of pollinators, potentially disrupting trophic interactions. Such imbalances could ripple through ecosystems, affecting their overall functioning and stability.

The paper, co-authored by Lang Weiguang, Piao Shilong, and Zhang Yao, indicates the need to understand these phenological divergences to predict ecosystem responses to ongoing climate warming. The researchers emphasize that addressing such asynchrony is crucial to safeguarding ecological balance in a warming world.

Journal Reference:
Lang, W., Zhang, Y., Li, X. et al. ‘Phenological divergence between plants and animals under climate change’, Nature Ecology & Evolution (2024). DOI: 10.1038/s41559-024-02597-0

Article Source:
Press Release/Material by Peking University
Featured image credit: kuritafsheen77 | Freepik

Image: Windmills
Three strategic pathways to achieve climate and sustainability goalsClimate

Three strategic pathways to achieve climate and sustainability goals

Securing a sustainable future while addressing the climate crisis is a multifaceted challenge In a recent study published in Environmental Research Letters, researchers from the…
Adrian AlexandreAdrian AlexandreOctober 30, 2024 Full article
Image: Iceberg, glacial lake
Tipping risks from overshooting 1.5 °C can be minimised if warming is swiftly reversedClimate

Tipping risks from overshooting 1.5 °C can be minimised if warming is swiftly reversed

By Potsdam Institute for Climate Impact Research (PIK) Human-made climate change can lead to a destabilisation of large-scale components of the Earth system such as…
SourceSourceAugust 2, 2024 Full article
Image: The Ziyang City viewing point on the hillside next to the White Emperor City in Fengjie offers a distant view of the Fengjie city area and the Kuimen Bridge upstream of the Yangtze River, and it is also a great spot to appreciate the sunset
Future shifts in Yangtze wetlands: climate and urbanization impacts on habitat qualityClimate

Future shifts in Yangtze wetlands: climate and urbanization impacts on habitat quality

Future of wetlands: predicting ecological shifts in the middle Yangtze River Basin Summary: Wetlands in the Middle Yangtze River Basin (MYRB) are facing growing ecological…
SourceSourceMarch 26, 2025 Full article