Skip to main content

A study by researchers at Peking University’s Institute of Carbon Neutrality has unveiled how plants and animals respond differently to climate change in their seasonal biological cycles, or phenology. This large-scale analysis, led by Piao Shilong and Zhang Yao, highlights increasing mismatches between the two groups, raising concerns about the stability of ecosystems.

Published in Nature Ecology & Evolution, the study compiled an extensive dataset of phenological observations, including nearly half a million time series for plants (covering 1,629 species or genera across 248 events) and over 43,000 for animals, covering numerous species and events across four decades.

Global distribution of phenological records (s. climate, plants, animals)
Global distribution of phenological records. a. Distribution of plant phenology observation sites; b. Distribution of animal phenology observation sites; c. Plant species; d. Plant phenology categories; e. Animal classes; f. Animal phenology categories. Credit: Lang et al. (2024) | DOI: 10.1038/s41559-024-02597-0 | Nature Ecology & Evolution

The findings show that plants exhibit a stronger response to warming, with later seasonal events such as fruiting advancing significantly over time. Nearly 30% of these changes were influenced by earlier events in the same growing season, suggesting that warming effects accumulate and amplify as seasons progress.

By contrast, animals displayed weaker and more variable phenological shifts. While insects showed slight advancements, the timing of seasonal activities in birds, mammals, and amphibians was often delayed. This variability stems from animals’ reliance on environmental cues, such as temperature or resource availability, which weakens the link between successive phenological events.

The research highlights that these divergent mechanisms may lead to increasing asynchrony between plants and animals. For instance, earlier flowering in plants might not align with the activity of pollinators, potentially disrupting trophic interactions. Such imbalances could ripple through ecosystems, affecting their overall functioning and stability.

The paper, co-authored by Lang Weiguang, Piao Shilong, and Zhang Yao, indicates the need to understand these phenological divergences to predict ecosystem responses to ongoing climate warming. The researchers emphasize that addressing such asynchrony is crucial to safeguarding ecological balance in a warming world.

Journal Reference:
Lang, W., Zhang, Y., Li, X. et al. ‘Phenological divergence between plants and animals under climate change’, Nature Ecology & Evolution (2024). DOI: 10.1038/s41559-024-02597-0

Article Source:
Press Release/Material by Peking University
Featured image credit: kuritafsheen77 | Freepik

Two so-called 'sun stones', which are small flat shale pieces with finely incised patterns and sun motifs. They are known only from the island of Bornholm, in the Baltic Sea
Volcanic eruption linked to Neolithic ‘sun stones’ sacrifices in Northern EuropeClimate

Volcanic eruption linked to Neolithic ‘sun stones’ sacrifices in Northern Europe

Major cultural changesSun stones to be exhibited in CopenhagenVolcanic eruption 2,900 BC A volcanic eruption around 2,900 BC, documented through ice core analysis from Greenland…
SourceSourceJanuary 17, 2025 Full article
COP29 hosts urge fossil fuel majors to donate to climate fundClimate

COP29 hosts urge fossil fuel majors to donate to climate fund

Paris, France (AFP) - Azerbaijan said Friday it hopes to raise money from fossil fuel producers for green projects in developing countries as the petro-state…
SourceSourceJuly 19, 2024 Full article
Image: corals, clownfish
Coral reefs: battlegrounds for survival in a changing climateClimate

Coral reefs: battlegrounds for survival in a changing climate

By Harrison Tasoff | University of California - Santa Barbara Coral reefs, those vibrant underwater cities, stand on the precipice of collapse. While rising ocean…
SourceSourceJuly 9, 2024 Full article