Researchers at the University of British Columbia (UBC) are investigating whether insects can offer a viable solution to the persistent problem of microplastic pollution.

A study published in Biology Letters by UBC zoologist Dr. Michelle Tseng and alumna Shim Gicole demonstrates that mealworms – already known for their ability to digest various organic materials – can consume and partially process microplastics in a more realistic setting than previously tested.

The study focused on mealworms fed a mixture of ground-up face masks, a common source of plastic waste, combined with bran to simulate a realistic diet. While previous experiments showed that insects could consume microplastics under extreme, food-scarce conditions, this research sought to assess their ability in an ecologically relevant scenario.

Mealworms feast on bran and microplastics in the lab. Credit M Tseng res
Mealworms feast on bran and microplastics in the lab. Credit: Michelle Tseng

Over 30 days, the mealworms consumed about half the microplastics provided, approximately 150 particles per insect. They excreted a small fraction of the plastic they ingested – about four to six particles per milligram of waste – while absorbing the rest. Remarkably, the insects not only survived but also gained weight during the study, suggesting no adverse effects from consuming microplastics.

Dr. Tseng highlights the significance of these findings: “Perhaps we can start viewing bugs as friends. We’re killing millions of insects every day from general pesticides – the very same insects we could be learning from to break down these plastics and other chemicals.”

Mealworms, which are hardy scavengers capable of surviving up to eight months without food or water, may offer a model for developing larger-scale solutions. Their digestive mechanisms could hold the key to breaking down microplastics efficiently.

The potential of plastic-eating insects underscores the need for innovative approaches to address the widespread issue of plastic pollution, which affects ecosystems worldwide and persists for decades. As researchers continue to explore the mealworms’ abilities, they aim to uncover mechanisms that could be scaled up to mitigate the growing environmental burden of plastic waste.

While mealworms alone are unlikely to resolve the problem, this research offers a promising avenue for developing new tools to combat microplastic pollution.

Journal Reference:
Shim Gicole, Alexandra Dimitriou, Natasha Klasios and Michelle Tseng, ‘Partial consumption of medical face masks by a common beetle species’, Biology Letters 20, 12 (2024) . DOI: 10.1098/rsbl.2024.0380

Article Source:
Press Release/Material by University of British Columbia
Featured image credit: krukke7 | Pixabay

Image: Starfish with plastic pieces
Climate and ecotoxicity risks of biodegradable microplasticsScience

Climate and ecotoxicity risks of biodegradable microplastics

Biodegradable plastics, often promoted as a greener alternative to traditional plastics, may not be as harmless as they seem when they enter the natural environment.…
Adrian AlexandreAdrian AlexandreOctober 23, 2024 Full article
A tree in the globe hovering in desert - abstract image (s. research, science, climate)
Muser Press – New Research Articles Week 8, 2025Science

Muser Press – New Research Articles Week 8, 2025

Discover the latest articles from leading science journals in the Muser Press weekly roundup, showcasing impactful research published this week. Long-term data prompts rethink on…
Muser NewsDeskMuser NewsDeskFebruary 23, 2025 Full article
Colorado’s prisons struggle to shield incarcerated people from climate disasters: studyNewsScience

Colorado’s prisons struggle to shield incarcerated people from climate disasters: study

Amid extreme weather events spurred by climate change, Colorado's prisons are struggling to provide adequate protection for incarcerated individuals against escalating environmental hazards, a new…
Muser NewsDeskMuser NewsDeskNovember 8, 2024 Full article