Skip to main content

Through a 20-year experiment, investigators have shown how different trees adjust their strategies for acquiring nutrients through their roots as soil warms with climate change.

The research, which is published in Global Change Biology, included trees that associate with different fungi that help roots absorb nutrients. Measurements showed that when exposed to warmer soils, oak trees associated with ectomycorrhizal fungi reduce interactions with soil microbes while increasing fine root exploration, whereas maple trees that associate with arbuscular mycorrhizal largely maintain their belowground patterns.

The findings suggest that the root systems of arbuscular mycorrhizal trees may not need to adjust their belowground foraging strategies as much as ectomycorrhizal trees to remain competitive as global temperatures rise.

“The structure of future forests under global warming will probably be influenced by the ability of tree roots and their fungal partners to compete belowground in warmer soils,” said corresponding author Nikhil R. Chari, a PhD student at Harvard University.

Journal Reference:
Nikhil R. Chari, Thomas J. Muratore, Serita D. Frey, Cristina L. Winters, Gabriela Martinez, Benton N. Taylor, ‘Long-Term Soil Warming Drives Different Belowground Responses in Arbuscular Mycorrhizal and Ectomycorrhizal Trees’, Global Change Biology 30, 11, e17550 (2024). DOI: 10.1111/gcb.17550

Article Source:
Press Release/Material by Wiley
Featured image credit: wirestock | Freepik

Climate Change Impacts Vary among Tree Species within the Same HabitatScience

Climate Change Impacts Vary among Tree Species within the Same Habitat

By Chinese Academy of Sciences Forests, which cover 31% of the Earth's land surface, are essential for maintaining biodiversity and regulating the climate. However, climate…
SourceSourceJune 15, 2024 Full article
Small iceberg floating in ocean water under a bright sky with the Sun visible above - climate change effects (s. science, climate, Muser)
Climate Science Digest: April 29, 2025Science

Climate Science Digest: April 29, 2025

Explore the latest insights from top science journals in the Muser Press daily roundup, featuring impactful research on climate change challenges. In brief: The global…
Muser NewsDeskMuser NewsDeskApril 29, 2025 Full article
Image: AI art of Earth - climate change effects (s. science, climate, Muser)
Climate Science Digest: October 31, 2025Science

Climate Science Digest: October 31, 2025

Explore the latest insights from top science journals in the Muser Press daily roundup (October 31, 2025), featuring impactful research on climate change challenges. In…
Muser NewsDeskMuser NewsDeskOctober 31, 2025 Full article