Through a 20-year experiment, investigators have shown how different trees adjust their strategies for acquiring nutrients through their roots as soil warms with climate change.

The research, which is published in Global Change Biology, included trees that associate with different fungi that help roots absorb nutrients. Measurements showed that when exposed to warmer soils, oak trees associated with ectomycorrhizal fungi reduce interactions with soil microbes while increasing fine root exploration, whereas maple trees that associate with arbuscular mycorrhizal largely maintain their belowground patterns.

The findings suggest that the root systems of arbuscular mycorrhizal trees may not need to adjust their belowground foraging strategies as much as ectomycorrhizal trees to remain competitive as global temperatures rise.

“The structure of future forests under global warming will probably be influenced by the ability of tree roots and their fungal partners to compete belowground in warmer soils,” said corresponding author Nikhil R. Chari, a PhD student at Harvard University.

Journal Reference:
Nikhil R. Chari, Thomas J. Muratore, Serita D. Frey, Cristina L. Winters, Gabriela Martinez, Benton N. Taylor, ‘Long-Term Soil Warming Drives Different Belowground Responses in Arbuscular Mycorrhizal and Ectomycorrhizal Trees’, Global Change Biology 30, 11, e17550 (2024). DOI: 10.1111/gcb.17550

Article Source:
Press Release/Material by Wiley
Featured image credit: wirestock | Freepik

Rapid urbanization in Africa transforms local food systems and threatens biodiversityScience

Rapid urbanization in Africa transforms local food systems and threatens biodiversity

By Bettina Greenwell, International Institute for Applied Systems Analysis (IIASA ) Urbanization in Africa is accelerating quickly, showing no signs of slowing down. An international…
SourceSourceMay 31, 2024 Full article
Revolutionizing acetaldehyde production with CO2: A greener path for industryScience

Revolutionizing acetaldehyde production with CO2: A greener path for industry

Acetaldehyde, a key ingredient in products ranging from plastics to perfumes, has long relied on fossil fuels for its production. However, as environmental concerns mount,…
SourceSourceJanuary 4, 2025 Full article
Image: AI art of Earth - climate change effects (s. science, climate, Muser)
Climate Science Digest: August 7, 2025Science

Climate Science Digest: August 7, 2025

Explore the latest insights from top science journals in the Muser Press daily roundup (August 7, 2025), featuring impactful research on climate change challenges. In…
Muser NewsDeskMuser NewsDeskAugust 7, 2025 Full article