Atmospheric electric fields may offer a breakthrough in predicting extreme weather, according to new research led by Dr. Roy Yaniv from the Institute of Earth Sciences at The Hebrew University of Jerusalem and Sheba Medical Center.

The study, conducted in collaboration with Dr. Assaf Hochman from The Hebrew University and Prof. Yoav Yair from Reichmann University, provides compelling evidence that monitoring electric field changes can enhance weather forecasting, especially in regions prone to sudden shifts in weather patterns, like Israel’s Negev Desert.

el field res
A rain event on 5 January 2018 linked with a deep Cyprus Low (A). Deep convective clouds over Israel during midday (B). Credit: Roy Yaniv, Yoav Yair, Assaf Hochman (2024) | DOI: 10.1016/j.atmosres.2024.107757 | Atmospheric Research

The research focuses on low-pressure winter systems, known as “Cyprus Lows,” which bring moisture-laden air to southern Israel, causing heavy precipitation. By analyzing electric field data, researchers observed that certain weather patterns produce unique electric field signatures.

Specifically, as convective clouds pass over, the electric Potential Gradient – a measure of electric field intensity – spikes sharply from fair-weather levels (100-200 volts per meter) to several thousand volts per meter. This sudden increase, the team found, is often linked to approaching rainfall, offering valuable “nowcasting” insights, which can give near real-time warnings of severe weather.

“The ability to identify these changes early is especially crucial in vulnerable regions like Israel, where even minor shifts in climate conditions can lead to major local impacts,” said Dr. Yaniv. “This research demonstrates how electric field variations can serve as indicators of shifting weather patterns, allowing us to anticipate severe weather events in real-time.”

The study’s minute-by-minute data also highlighted that factors beyond rain intensity, such as cloud structure and the electrical charge of rain droplets, play a role in these electric fluctuations. These findings suggest that electric field measurements could serve as an early warning system, particularly beneficial in areas where rapid changes in weather can lead to flash floods or other hazardous conditions.

As global climate patterns continue to shift, the inclusion of electric field monitoring in weather prediction could be particularly useful in arid and semi-arid regions, where small climate variations often result in significant environmental impacts.

Journal Reference:
Roy Yaniv, Yoav Yair, Assaf Hochman, ‘Understanding heavy precipitation events in southern Israel through atmospheric electric field observations’, Atmospheric Research 313, 107757 (2024). DOI: 10.1016/j.atmosres.2024.107757

Article Source:
Press Release/Material by The Hebrew University of Jerusalem
Featured image credit: Gabriel Mihalcea | Pexels

Image: green trees under sunny sky (s. heatwave, global warming)
Heatwave durations accelerating faster than global warming, study findsClimate

Heatwave durations accelerating faster than global warming, study finds

The longest and rarest heatwaves – which can last for weeks – show the greatest increase in frequency Summary: As global temperatures rise, the world’s…
SourceSourceJuly 9, 2025 Full article
Satellite image: Adriatic Sea, Croatia
Image of the day: Bora wind patterns captured over the Adriatic SeaClimate

Image of the day: Bora wind patterns captured over the Adriatic Sea

The captivating image captured by the Copernicus Sentinel-2 satellite reveals the striking effects of the bora wind over the Adriatic Sea, specifically between Croatia's Dalmatian…
Muser NewsDeskMuser NewsDeskDecember 7, 2024 Full article
Image: A Penguin in Antarctica
How politics and climate could affect the Antarctic TreatyClimate

How politics and climate could affect the Antarctic Treaty

The Antarctic Treaty System has long been hailed as an example of successful international cooperation. But could that be at risk? It's been hot in…
SourceSourceMay 27, 2024 Full article