A research team led by Dr. Alexandre Pereira Santos at Ludwig Maximilian University of Munich has introduced a pioneering model designed to improve how scientists understand and respond to the growing convergence of global crises.

These include climate disasters, pandemics, species extinction, and violent conflicts – interacting risks that pose increasingly complex challenges in the Anthropocene, the current era shaped by human activity.

“We know that these risks cause damages and losses, which may become even greater when hazards interact and multiply their impacts,” explains Pereira Santos from LMU’s Department of Geography. For instance, the COVID-19 pandemic not only threatened public health, but also drove widespread economic hardship, revealing how multiple risks can exacerbate one another. Yet, the complexity of these interactions remains poorly understood, often eluding effective policy responses.

stages of multiple stressor res
The stages of the multiple-stressor framework. Credit: One Earth (2024) | DOI: 10.1016/j.oneear.2024.09.006

In a study recently published in One Earth, Pereira Santos and colleagues from Universität Hamburg and the Norwegian University of Science and Technology (NTNU) introduce a new framework that aims to bridge the gap.

Their approach connects climate and social science perspectives using a “translator” model. This innovative tool allows researchers to consider diverse factors and scales, without losing the richness of the data, which is crucial for crafting more inclusive and context-aware policies.

Before our approach, researchers often had to choose which aspects to consider in order to avoid information overload. Or they had to perform general analyses of multiple risks, regions, or social sectors, resulting in the loss of information,” says Pereira Santos. The new model resolves this issue by combining different sources of evidence into a coherent whole, preserving both the depth and breadth needed for comprehensive risk analysis.

This integrated method holds promise for shaping future policies that more effectively address the cascading impacts of crises, helping societies prepare for an increasingly interconnected world.

Journal Reference:
Alexandre Pereira Santos et al. ‘Integrating broad and deep multiple-stressor research: A framework for translating across scales and disciplines’, One Earth 7 (10), 1713 – 1726 (2024). DOI: 10.1016/j.oneear.2024.09.006

Article Source:
Press Release/Material by Ludwig Maximilian University of Munich (LMU)
Featured image credit: Freepik

Image: AI art of Earth - climate change effects (s. science, climate, Muser)
Climate Science Digest: October 3, 2025Science

Climate Science Digest: October 3, 2025

Explore the latest insights from top science journals in the Muser Press daily roundup (October 3, 2025), featuring impactful research on climate change challenges. In…
Muser NewsDeskMuser NewsDeskOctober 3, 2025 Full article
Icebergs in Antarctica
Ocean currents threaten to collapse Antarctic ice shelvesScience

Ocean currents threaten to collapse Antarctic ice shelves

A new study published in Nature Communications has revealed that the interplay between meandering ocean currents and the ocean floor induces upwelling velocity, transporting warm…
SourceSourceApril 12, 2024 Full article
Straws turn into microplastics
Uniting society to combat microplastics pollutionScience

Uniting society to combat microplastics pollution

Microplastics pollution has emerged as a pervasive global challenge, stemming from humanity’s reliance on plastic products and the resilience of these materials in the environment.…
Muser NewsDeskMuser NewsDeskJanuary 20, 2025 Full article