A research team led by Dr. Alexandre Pereira Santos at Ludwig Maximilian University of Munich has introduced a pioneering model designed to improve how scientists understand and respond to the growing convergence of global crises.

These include climate disasters, pandemics, species extinction, and violent conflicts – interacting risks that pose increasingly complex challenges in the Anthropocene, the current era shaped by human activity.

“We know that these risks cause damages and losses, which may become even greater when hazards interact and multiply their impacts,” explains Pereira Santos from LMU’s Department of Geography. For instance, the COVID-19 pandemic not only threatened public health, but also drove widespread economic hardship, revealing how multiple risks can exacerbate one another. Yet, the complexity of these interactions remains poorly understood, often eluding effective policy responses.

stages of multiple stressor res
The stages of the multiple-stressor framework. Credit: One Earth (2024) | DOI: 10.1016/j.oneear.2024.09.006

In a study recently published in One Earth, Pereira Santos and colleagues from Universität Hamburg and the Norwegian University of Science and Technology (NTNU) introduce a new framework that aims to bridge the gap.

Their approach connects climate and social science perspectives using a “translator” model. This innovative tool allows researchers to consider diverse factors and scales, without losing the richness of the data, which is crucial for crafting more inclusive and context-aware policies.

Before our approach, researchers often had to choose which aspects to consider in order to avoid information overload. Or they had to perform general analyses of multiple risks, regions, or social sectors, resulting in the loss of information,” says Pereira Santos. The new model resolves this issue by combining different sources of evidence into a coherent whole, preserving both the depth and breadth needed for comprehensive risk analysis.

This integrated method holds promise for shaping future policies that more effectively address the cascading impacts of crises, helping societies prepare for an increasingly interconnected world.

Journal Reference:
Alexandre Pereira Santos et al. ‘Integrating broad and deep multiple-stressor research: A framework for translating across scales and disciplines’, One Earth 7 (10), 1713 – 1726 (2024). DOI: 10.1016/j.oneear.2024.09.006

Article Source:
Press Release/Material by Ludwig Maximilian University of Munich (LMU)
Featured image credit: Freepik

Image: A new electrode design developed at MIT boosts the efficiency of electrochemical reactions that turn carbon dioxide into ethylene and other products
MIT engineers pioneer advanced technology to transform CO2 into clean fuelScience

MIT engineers pioneer advanced technology to transform CO2 into clean fuel

As global efforts to curb greenhouse gas emissions accelerate, researchers continue to search for practical and cost-effective solutions to convert captured carbon dioxide (CO2) into…
Muser NewsDeskMuser NewsDeskNovember 14, 2024 Full article
Image: blue and white light digital wallpaper (s. catalyst, energy, green hydrogen)
Breakthrough boron-doped catalyst could cut green hydrogen costsScience

Breakthrough boron-doped catalyst could cut green hydrogen costs

Scientists developed a new tunable boron-doped cobalt phosphide catalyst with low cost and high efficiency for electrochemical water-splitting Summary: Producing green hydrogen at scale has…
SourceSourceJune 12, 2025 Full article
Small iceberg floating in ocean water under a bright sky with the Sun visible above - climate change effects (s. science, climate, Muser)
Climate Science Digest: December 17, 2024Science

Climate Science Digest: December 17, 2024

Explore the latest insights from top science journals in the Muser Press daily roundup (December 17, 2024), featuring impactful research on climate change challenges. The…
Muser NewsDeskMuser NewsDeskDecember 17, 2024 Full article