Skip to main content

Researchers at the Politecnico di Milano’s Department of Energy have made a significant stride in combating climate change.

Their latest study, featured in Angewandte Chemie, presents new methods to enhance the efficiency of converting two key greenhouse gases, methane (CH4) and carbon dioxide (CO2), into valuable energy resources using the Dry Reforming process. This development offers potential for reducing the environmental impact of these gases while generating energy more sustainably.

Led by Professor Matteo Maestri, the study focused on using supported metal nanoparticles as catalysts to transform methane and carbon dioxide into synthesis gas, a key resource in hydrogen production and other chemical industries. However, carbon build-up on the catalysts has been a significant hurdle, limiting their efficiency and scalability.

The build-up of carbon on catalysts used for the thermocatalytic conversion of CO2 reduces the efficiency of these processes and represents a barrier to their industrial application. The research team headed by Prof. Matteo Maestri discovered that carbon formation is closely related to the ratio of carbon dioxide (CO2) to methane (CH4) present during the Dry Reforming reaction. The image (n.e. see featured image of this article), published on the front cover of the prestigious scientific journal Angewandte Chemie, expresses this concept and depicts a hot-air balloon flying over dark mountains, a metaphor for carbon formation. The CO2 molecules, present in greater numbers than the methane molecules in the basket, are the balloon’s driving force. Without the thrust provided by the CO2, the methane would tend to sink downwards, towards the undesirable formation of carbon. Credit: Politecnico di Milano | DOI: 10.1002/anie.202408668

By employing operando Raman spectroscopy, an advanced technique that allows real-time analysis of catalysts during chemical reactions, the research team uncovered a crucial relationship between the ratio of carbon dioxide to methane and the rate of carbon formation. This insight could be a game changer in extending the life of catalysts and making Dry Reforming more viable for large-scale use.

“Our work allowed us to observe how a catalyst transforms during the reaction,” explained Prof. Maestri. “Knowing this will help us improve the efficiency of catalysts, with a potentially significant impact on the reduction of greenhouse gas emissions and long-term energy sustainability.”

This breakthrough could lead to longer-lasting, more efficient catalysts, enabling wider adoption of Dry Reforming to reduce methane and CO2 emissions. These findings have far-reaching implications for the hydrogen and biogas sectors, where sustainable technologies are in high demand.

The research could help industries transition to cleaner, more energy-efficient technologies. Methane, in particular, is a potent greenhouse gas with a significantly higher global warming potential than CO2, making its efficient conversion into energy critical for meeting global climate targets.

By addressing the issue of carbon build-up, the Politecnico di Milano study offers a promising new avenue for reducing greenhouse gas emissions, with potential long-term benefits for energy sustainability and environmental protection.

Journal Reference:
Riccardo Colombo, Dr. Gianluca Moroni, Dr. Chiara Negri, Dr. Guusje Delen, Dr. Matteo Monai, Prof. Dr. Alessandro Donazzi, Prof. Dr. Ir. Bert M. Weckhuysen, Prof. Dr. Matteo Maestri, ‘Surface Carbon Formation and its Impact on Methane Dry Reforming Kinetics on Rhodium-Based Catalysts by Operando Raman Spectroscopy’, Angewandte Chemie International Edition (2024). DOI: 10.1002/anie.202408668

Article Source:
Press Release/Material by Politecnico di Milano
Featured image credit: Politecnico di Milano

Image of the day: Autumn hues of Dealurile Homoroadelor
Dealurile Homoroadelor, Romania image from space
Image of the day: Autumn hues of Dealurile HomoroadelorNews

Image of the day: Autumn hues of Dealurile Homoroadelor

Dealurile Homoroadelor, a serene expanse of rolling hills in central Romania, shines as a beacon of biodiversity and environmental protection. This Natura 2000 site, spanning…
Muser NewsDeskMuser NewsDeskJanuary 4, 2025 Full article
Revolutionizing acetaldehyde production with CO2: A greener path for industry
Revolutionizing acetaldehyde production with CO2: A greener path for industryScience

Revolutionizing acetaldehyde production with CO2: A greener path for industry

Acetaldehyde, a key ingredient in products ranging from plastics to perfumes, has long relied on fossil fuels for its production. However, as environmental concerns mount,…
SourceSourceJanuary 4, 2025 Full article
Spinning a tune: Chinese scientist names new spider species after pop songs
Jumping Spider
Spinning a tune: Chinese scientist names new spider species after pop songsNews

Spinning a tune: Chinese scientist names new spider species after pop songs

Beijing, China | AFP - A Chinese scientist has named 16 new spider species after songs by popular "Mandopop" musician Jay Chou. Mi Xiaoqi, a…
SourceSourceJanuary 4, 2025 Full article