Skip to main content

The European Space Agency’s (ESA) EarthCARE satellite, launched in May 2024, has now fully activated its atmospheric lidar, the ATLID.

As the last of four advanced instruments onboard, ATLID offers unprecedented detail on the vertical distribution of aerosols and clouds in the Earth’s atmosphere. This joint mission with the Japan Aerospace Exploration Agency (JAXA) marks a milestone in accurately measuring clouds, aerosols, and their effects on Earth’s energy balance.

Equipped with cloud profiling radar, broadband radiometer, multispectral imager, and atmospheric lidar, EarthCARE is designed to collect comprehensive data.

Aerosols and storms over North AmericaThis profile, captured on 4 August by the atmospheric lidar, is a strip over North America. Here, the presence of tropical storm Debby is clear to see over the Gulf of Mexico, as are large convective clouds further north. As these clouds are optically very thick, as can be seen in the multispectral imager information, the lidar captures details of the cloud tops, but cannot see below them. Additionally, a striking red layer of aerosols is visible in the central part of the profile. These aerosols have been carried by the wind from forest fires that have been burning for a number of weeks in several regions of Canada. Smoke from forest fires plays a complex role in climate change, with both immediate and long-term effects that can disrupt weather patterns, accelerate global warming, as well as impact air quality when close to the ground. Beneath this dense layer of smoke lies a more diffuse concentration of aerosols, originating from a variety of sources. Credit: ESA

The lidar system measures aerosols – tiny particles from natural and human sources – by emitting ultraviolet light pulses and analyzing their reflection from atmospheric particles. The combination of EarthCARE’s instruments will provide a deeper understanding of how aerosols and clouds interact with solar radiation and thermal energy, vital for tracking climate change.

First results and ground campaigns enhance data accuracy

In August 2024, EarthCARE began delivering its first data. Initial images captured by ATLID showed a diverse range of atmospheric phenomena, from Polar Stratospheric Clouds over Antarctica, which play a role in ozone depletion, to plumes of smoke from wildfires in Canada.

“The wealth of data and detailed insight into the structures of the atmosphere are absolutely impressive,” said Ulla Wandinger, a leading researcher on the ATLID instrument.

To ensure the highest possible accuracy in interpreting satellite data, a large-scale measurement campaign coordinated by the Leibniz Institute for Tropospheric Research (TROPOS) is underway. Around 50 ground stations from the European ACTRIS network are involved in these efforts, comparing data from EarthCARE with ground and airborne measurements. A German research aircraft, HALO, is conducting validation flights in the Atlantic and Europe as part of the HALO-PERCUSION mission.

This initiative will support EarthCARE’s role in advancing climate science, providing essential data for more accurate models of how clouds and aerosols influence Earth’s climate.

Journal Reference:
Laj, P., et al. ‘Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS): The European Research Infrastructure Supporting Atmospheric Science’, Bulletin of the American Meteorological Society 105(7), E1098–E1136 (2024). DOI: 10.1175/BAMS-D-23-0064.1

More information:
ESA (EarthCARE profiles atmospheric particles in detail, 21/08/2024)
Article Source:
Press Release/Material by Leibniz Institute for Tropospheric Research (TROPOS)
Featured image: The ground stations of the European research infrastructure ACTRIS play an important role in calibrating the data from the EarthCARE satellite: they have been established and expanded in recent years to analyse aerosol particles and clouds using remote sensing instruments such as lidar and radar. Around 50 stations in Europe and overseas are involved in the atmo4ACTRIS measurement campaign. Credit: Tilo Arnhold | TROPOS

Arctic warming linked to increased ice formation in clouds, study finds
Arctic warming linked to increased ice formation in clouds, study findsScience

Arctic warming linked to increased ice formation in clouds, study finds

Recent research reveals an unexpected connection between Arctic warming and ice formation in clouds, potentially influencing the region's climate system. As the Arctic continues to…
Adrian AlexandreAdrian AlexandreSeptember 19, 2024 Full article
Fiji coral study reveals Pacific’s highest temperatures in over 600 years
Fiji coral study reveals Pacific’s highest temperatures in over 600 yearsScience

Fiji coral study reveals Pacific’s highest temperatures in over 600 years

International study uses data obtained from the analysis of the honeycomb coral Diploastrea heliopora to reconstruct sea surface temperatures of the Fijian archipelago. The sea…
SourceSourceSeptember 18, 2024 Full article
‘Marine Identity’ can help save the ocean
‘Marine Identity’ can help save the oceanScience

‘Marine Identity’ can help save the ocean

Research led by Dr. Pamela Buchan from the University of Exeter reveals that people's deep connection to the ocean, referred to as "marine identity," can…
Adrian AlexandreAdrian AlexandreSeptember 17, 2024 Full article