Skip to main content

A recent study published in Nature Communications highlights a previously underestimated consequence of large-scale deforestation: reduced cloud cover, which amplifies global warming.

Researchers from Leipzig University and Sun Yat-sen University in China have found that deforestation not only releases carbon dioxide but also diminishes low-level and tropical high-level clouds, significantly altering the climate’s radiative balance.

The study, led by Dr. Hao Luo from the Institute for Meteorology at Leipzig University, demonstrates that forests – due to their darker surfaces – absorb more sunlight, leading to a cooling effect. However, deforestation reduces cloud formation, which in turn nearly halves this cooling effect.

“Low-level clouds have a cooling effect on the climate because they reflect a lot of sunlight,” said Professor Johannes Quaas, co-author and a researcher at Leipzig University and the German Centre for Integrative Biodiversity Research.

The research is based on climate model simulations and reanalyses of deforestation scenarios. The results show that the decreased cloud cover is linked to changes in surface turbulent heat fluxes, which reduce moisture and uplift – key drivers of cloud formation. This effect partially offsets the cooling influence of increased surface albedo in deforested areas, where lighter surfaces reflect more sunlight. “The decreased cloud cover can be explained by alterations in surface turbulent heat flux, which diminishes uplift and moisture to varying extents,” says Professor Quaas.

While the biophysical effects of forests on the climate have been recognized, the impact of deforestation on clouds remains less understood. This research sheds new light on the interaction between land use changes and atmospheric processes.

The researchers emphasize the need for further investigation into how different meteorological processes in forested versus deforested areas impact clouds and radiative balance. They note that this aspect of climate science has not been fully explored. Ongoing studies are also looking into the role of forest biodiversity in cloud formation and its potential climate implications.

Journal Reference:
Luo, H., Quaas, J. & Han, Y. ‘Decreased cloud cover partially offsets the cooling effects of surface albedo change due to deforestation’, Nature Communications 15, 7345 (2024). DOI: 10.1038/s41467-024-51783-y

Article Source:
Press Release/Material by  Leipzig University
Featured image credit: Mike van Schoonderwalt | Pexels

Novel spectroscopy technique sheds light on NOx reduction
Novel spectroscopy technique sheds light on NOx reductionScience

Novel spectroscopy technique sheds light on NOx reduction

By Lehigh University When power plants burn fossil fuels at high temperatures, nitrogen and oxygen molecules break apart and then recombine to form a class…
SourceSourceJuly 1, 2024 Full article
Targeted Home Systems to Remove PFAS More Cost-Effective Than System-Wide Solutions
Image: glass of water
Targeted Home Systems to Remove PFAS More Cost-Effective Than System-Wide SolutionsScience

Targeted Home Systems to Remove PFAS More Cost-Effective Than System-Wide Solutions

By University of New Hampshire PFAS, the potentially cancer-causing chemicals known as ‘forever chemicals’, have become an increasing concern in home drinking water. Solutions to…
SourceSourceJuly 12, 2024 Full article
Fewer wildfires today may lead to more severe fires in the future
Image: Wildfire (s. forest, fire, climate)
Fewer wildfires today may lead to more severe fires in the futureScience

Fewer wildfires today may lead to more severe fires in the future

Summary:New research analyzed tree rings and fire scars to compare modern fires to those in the past Summary: A recent study highlights an alarming trend:…
SourceSourceFebruary 14, 2025 Full article