Skip to main content

Scientists at Washington University in St. Louis (WashU) have revealed the significant role of dark brown carbon (d-BrC), a previously overlooked wildfire byproduct, in accelerating snow melt.

In a study published in npj Climate and Atmospheric Science, researchers at Washington University in St. Louis identified d-BrC as a potent light-absorbing organic carbon that darkens snow and increases heat absorption. This research highlights the importance of accounting for d-BrC in climate models to improve accuracy in predicting snow melt caused by wildfire smoke.

While black carbon (BC) has long been considered the primary culprit, the study found that d-BrC is 1.6 times more effective at warming snow than BC. This discovery is particularly relevant to regions such as the Tibetan Plateau, where significant amounts of water-insoluble organic carbon are deposited on snow.

Deposition of water-insoluble organic carbon on snow has been previously recorded, “but nobody really looked under the hood to investigate their snow-melting potential,” said Rajan Chakrabarty, a professor at WashU’s McKelvey School of Engineering.

The research team, led by PhD student Ganesh Chelluboyina, a McDonnell International Scholars Academy fellow, and Taveen Kapoor, a postdoctoral fellow, conducted modeling that suggests d-BrC plays a much larger role in reducing snow reflectivity than previously thought. This darkening effect intensifies the warming cycle, causing air temperatures to rise further and contributing to snow melt.

One of the key findings is that while d-BrC absorbs less sunlight than black carbon, it is four times more abundant in wildfire smoke. This indicates that past models may have significantly underestimated the warming potential of wildfire particles deposited on snow.

As wildfires become increasingly common due to climate change, the research underscores the need for policymakers to consider the impact of d-BrC in their strategies for managing snow melt and its downstream effects on water resources and ecosystems.

Moving forward, the team plans to experiment with simulated snow conditions in the lab to study d-BrC’s effects. Chelluboyina describes their unique approach: “We’ll be dropping atomized water droplets into the top of the chamber, creating snow, then deposit aerosols on it.”

This study opens the door for further investigations into the role of wildfire aerosols in snow-albedo feedback and could inform future climate adaptation measures.

Journal Reference:
Chelluboyina, G.S., Kapoor, T.S. & Chakrabarty, R.K. ‘Dark brown carbon from wildfires: a potent snow radiative forcing agent?’, npj Climate and Atmospheric Science 7, 200 (2024). DOI: 10.1038/s41612-024-00738-7

Article Source:
Press Release/Material by Washington University in St. Louis
Featured image credit: Chao Xu | Pexels

Muser Press – New Research Articles Week 51, 2024
Muser Press – New Research Articles Week 51, 2024Science

Muser Press – New Research Articles Week 51, 2024

3D concrete printing method captures carbon dioxide Scientists at Nanyang Technological University (NTU) in Singapore have pioneered a 3D concrete printing method that incorporates carbon…
Muser NewsDeskMuser NewsDeskDecember 22, 2024 Full article
Climate Science Digest: December 20, 2024
Climate Science Digest: December 20, 2024Science

Climate Science Digest: December 20, 2024

Changes in store for atmospheric rivers David Hosansky | UCAR - Communities up and down the West Coast of the United States can expect the…
Muser NewsDeskMuser NewsDeskDecember 20, 2024 Full article
Satellites unite to reveal Greenland Ice Sheet’s dramatic transformation
Satellites unite to reveal Greenland Ice Sheet’s dramatic transformationScience

Satellites unite to reveal Greenland Ice Sheet’s dramatic transformation

For the first time, satellite missions from ESA and NASA have united to provide a detailed picture of the dramatic changes occurring in the Greenland…
Muser NewsDeskMuser NewsDeskDecember 20, 2024 Full article