Stockholm University researchers have unveiled an alternative approach to assessing global water scarcity, revealing that the risks to water supply are more significant than previously understood.

Published in Nature Water, the study suggests that evaluating the environmental and governance conditions in regions where rain originates, rather than just where it falls, leads to a nearly 50% increase in the estimated risk to global water security.

global water muser res
The figure describes the relationship between the risk to water security in each hydrological basin and the governance and environmental conditions in the regions upwind. The relationship between governance (y axis), environmental performance (x axis), the level of risk to water security of each hydrological basin relative to the 379 basins used in the study (colour gradient) and the area of the basin (size of the circle). Governance is calculated as the mean of the five governance indicators; voice accountability, political stability, government effectiveness, regulatory quality and the rule of law (reported by the World Bank). Environmental performance is given by the 40 indicators of the Environmental Performance Index from the Yale Center for Environmental Law and Policy. The dashed red polygonhighlights basins with low levels of upwind governance and environmental performance. Credit: Stockholm University | DOI: 10.1038/s44221-024-00291-w

Traditionally, water security assessments focus on the rain that falls on the Earth’s surface and is stored in aquifers, lakes, and rivers. However, this new research emphasizes the importance of considering the source of the moisture that eventually becomes rain – a concept referred to as the precipitationshed. This approach takes into account the upwind regions where moisture evaporates from land or oceans before traveling through the atmosphere and falling as rain in downwind areas.

“Water supply really originates beforehand, with moisture evaporated from land or in the ocean traveling in the atmosphere before falling as rain. This upwind moisture is commonly overlooked when assessing water availability,” explained Fernando Jaramillo, associate professor in physical geography at Stockholm University and the study‘s lead researcher.

By analyzing 379 hydrological basins around the world, the researchers found that when the upwind origin of water is considered, the volume of water facing very high risk increases from 20,500 km³ per year to 32,900 km³ per year.

The study also highlights the significant impact that political and environmental management in upwind regions can have on downwind water security.

For example, deforestation and agricultural development in upwind areas can reduce the amount of moisture available for downwind rainfall, thereby increasing the risk of water scarcity. This is particularly concerning for landlocked countries like Niger, which rely heavily on moisture evaporated from neighboring countries such as Nigeria and Ghana.

Lan Wang-Erlandsson, a co-author of the study from the Stockholm Resilience Centre, emphasized the interdependence between upwind and downwind regions: “It is not possible to ignore the interdependence between countries. In the end, all water is connected, so we should not only mind how we manage our water resources within a region or country but also how our neighboring countries do.”

The study underscores the need for international cooperation in managing upwind moisture sources, suggesting that a shift in perspective could help mitigate water-related tensions and improve global water governance frameworks.

Journal Reference:
Posada-Marín, J., Salazar, J., Rulli, M.C. et al. ‘Upwind moisture supply increases risk to water security’, Nature Water (2024). DOI: 10.1038/s44221-024-00291-w

Article Source:
Press Release/Material by Stockholm University
Featured image credit: jcomp | Freepik

A tree in the globe hovering in desert - abstract image (s. research, science, climate)
Muser Press – New Research Articles Week 40, 2024Science

Muser Press – New Research Articles Week 40, 2024

The impact of environmental shocks due to climate change on intimate partner violence: A structural equation model of data from 156 countries Climate change-related landslides,…
SourceSourceOctober 6, 2024 Full article
Image: icebergs
New tipping point discovered beneath the Antarctic ice sheetClimateScience

New tipping point discovered beneath the Antarctic ice sheet

By British Antarctic Survey (BAS) Warm water that seeps underneath can melt ice in way not yet included in models. A new and worrying way…
SourceSourceJune 25, 2024 Full article
Image: door to new world composition
Human urine as sustainable fertilizer – new study shows minimal soil impactScience

Human urine as sustainable fertilizer – new study shows minimal soil impact

Human urine could offer a sustainable alternative to synthetic fertilizers, according to new research by scientists from the University of Birmingham and L’Institut Agro Montpellier.…
Adrian AlexandreAdrian AlexandreSeptember 23, 2024 Full article