Skip to main content

Study uncovers nearly 1,700 viral species in ice cores, linking viral evolution to past climate changes.

A new study has unveiled the potential of ancient viruses preserved in glacial ice to shed light on historical climate changes. Researchers analyzing ice cores from the Guliya Glacier on the Tibetan Plateau have identified nearly 1,700 viral species, many of which were previously unknown to science. The findings suggest that these viruses played a role in their hosts’ adaptation to extreme weather conditions during different climatic periods.

The research, published in Nature Geoscience, was led by Dr. ZhiPing Zhong, a research associate at The Ohio State University’s Byrd Polar and Climate Research Center. Zhong’s team extracted viral DNA from ice cores taken from the Guliya Glacier, located over 20,000 feet above sea level, revealing a vast diversity of viruses, three-fourths of which were newly discovered. These viruses likely infected microbes rather than animals or humans, minimizing any direct health risks.

“Before this work, how viruses linked to large-scale changes in Earth’s climate had remained largely uninvestigated,“ said Zhong. The study provides a unique window into how microorganisms responded to the Earth’s climate transitions, particularly during the shift from the Last Glacial Stage to the warmer Holocene epoch around 11,500 years ago.

The research is particularly timely as global warming accelerates glacier melt, threatening to erase these valuable archives of Earth’s climate history. The ice cores examined in this study preserved pristine records of viral activity during three major cold-to-warm transitions over the last 41,000 years.

Advanced sequencing technologies allowed the researchers to identify the genetic signatures of these ancient viruses. While most of the viruses were unique to the Guliya Glacier, about a quarter shared similarities with known viruses from other regions, suggesting possible transportation from distant areas like the Middle East or the Arctic.

The study’s co-author, Lonnie Thompson, a professor of earth sciences at Ohio State University, emphasized the broader implications of this research. “To me, this science is a new tool that can answer basic climate questions that we couldn’t have answered otherwise,” he said. The techniques developed for this study could also have applications beyond Earth, potentially aiding in the search for life on other planets.

As the study notes, the race is on to further explore these viral and climatic connections before glacier melt compromises the ability to study them. The interdisciplinary approach taken by the research team, which involved collaboration between Ohio State’s Byrd Polar and Climate Research Center and the Center of Microbiome Science, was crucial to the study’s success.

“This kind of opportunity represents several disciplines coming together, each with their own scientific languages as a barrier to proceed,” said Matthew Sullivan, a co-author and professor of microbiology at Ohio State University.

***

The study was supported by several institutions, including the National Science Foundation and the Chinese Academy of Sciences, highlighting the global interest in understanding the links between ancient viruses and climate change.

Other co-authors include Ellen Mosley-Thompson, Olivier Zablocki, Yueh-Fen Li and Virginia Rich of Ohio State, as well as James Van Etten of the University of Nebraska.

Journal Reference:
Zhong, ZP., Zablocki, O., Li, YF. et al. ‘Glacier-preserved Tibetan Plateau viral community probably linked to warm–cold climate variations’, Nature Geoscience (2024). DOI: 10.1038/s41561-024-01508-z

Article Source:
Press Release/Material by Ohio State University
Featured image credit: LuisValiente | Pixabay

Fiji coral study reveals Pacific’s highest temperatures in over 600 years
Fiji coral study reveals Pacific’s highest temperatures in over 600 yearsScience

Fiji coral study reveals Pacific’s highest temperatures in over 600 years

International study uses data obtained from the analysis of the honeycomb coral Diploastrea heliopora to reconstruct sea surface temperatures of the Fijian archipelago. The sea…
SourceSourceSeptember 18, 2024 Full article
‘Marine Identity’ can help save the ocean
‘Marine Identity’ can help save the oceanScience

‘Marine Identity’ can help save the ocean

Research led by Dr. Pamela Buchan from the University of Exeter reveals that people's deep connection to the ocean, referred to as "marine identity," can…
Adrian AlexandreAdrian AlexandreSeptember 17, 2024 Full article
Fraunhofer IAF’s low-noise amplifiers enhance Arctic Weather Satellite’s capabilities
Fraunhofer IAF’s low-noise amplifiers enhance Arctic Weather Satellite’s capabilitiesScience

Fraunhofer IAF’s low-noise amplifiers enhance Arctic Weather Satellite’s capabilities

The European Space Agency’s (ESA) Arctic Weather Satellite (AWS) is set to revolutionize weather forecasting and climate monitoring, particularly in the Arctic, by collecting highly…
Adrian AlexandreAdrian AlexandreSeptember 17, 2024 Full article