Skip to main content

By Hokkaido University, Aarhus University & Greenland Institute of Natural Resources

Applying chaos theory to the movement of iconic arctic whales uncovered a 24-hour diving cycle and a long-range (~100 km) synchronization.

Bowhead whales are among the largest and longest-lived mammals in the world. They play a vital role in the marine ecosystems of the Arctic Ocean, yet relatively little is known about their foraging and diving behaviors.

P2417 Fig1 Mads PHJ res
Bowhead whales are tagged in Disko Bay, West Greenland, to track their movements and diving behavior. Credit: Mads Peter Heide-Jørgensen

Now, in a paper to be published in the journal Physical Review Research, a team of scientists from Japan, Greenland and Denmark have detected patterns in the whales’ behavior that could offer clues into how they forage and socialize.

Associate Professor Evgeny A. Podolskiy at the Arctic Research Center, Hokkaido University, Professor Jonas Teilmann at the Department of Ecoscience, Aarhus University, and Professor Mads Peter Heide-Jørgensen at the Department of Birds and Mammals, Greenland Institute of Natural Resources, studied 144 days of diving records of 12 bowhead whales tagged in Disko Bay, West Greenland.

Because whale diving behavior can be seen as a chaotic, self-sustained oscillation that balances the need for food at depths with the need for oxygen at the surface, the researchers used a dynamical systems chaos approach to uncover patterns within the apparently disorderly collective behavior.

P2417 Fig2
Tagging a bowhead whale. Credit: Mads Peter Heide-Jørgensen

Their analysis detected a 24-hour cycle of diving during the spring, with the whales swimming deepest in the afternoon to track the daily movement of their prey towards the surface, a phenomenon known as the diel vertical migration.

“We find that foraging whales dive deeper during the daytime in spring, with this diving behavior being in apparent synchrony with their vertically migrating prey,” said Heide-Jørgensen. “Until now, this hasn’t been shown for spring, and remained contradictory for autumn.”

The research team also made the surprising discovery of two bowhead whales diving in synchrony over the course of a week at a time, even when they were around one hundred kilometers apart. The pair – one female and one of unknown sex – were sometimes as close as five kilometers and sometimes hundreds of kilometers apart, yet they would closely time their diving bouts for durations of up to a week, although to different depths.

The synchronization was observed when they were within acoustic range of each other, which can exceed 100 kilometers, although the researchers didn’t record the whales’ sounds to determine whether they were interacting, as it remains a technically challenging task.

P2417 Fig3
Depth records from the twelve tagged bowhead whales in Disko Bay, West Greenland (data are relative to the start of a year, irrespectively of year). Credit: Evgeny A. Podolskiy, Jonas Teilmann, Mads Peter Heide-Jørgensen, Physical Review Research.

“Without direct observations, such as recordings of the two whales, it isn’t possible to determine that the individuals were exchanging calls,” said Teilmann, nevertheless, “the observed subsurface behavior might be the first evidence supporting the acoustic herd theory of long-range signaling in baleen whales proposed by Payne and Webb back in 1971.”

P2417 Fig4
The main episodes of synchronization (quantified by phase difference) occur when the whales remain within the maximum acoustic communication range of ∼130 km (black line; green/red shading indicates where the acoustic contact is likely/unlikely). Credit: Evgeny A. Podolskiy, Jonas Teilmann, Mads Peter Heide-Jørgensen, Physical Review Research.

“The possibility of acoustically connected whales, which seem to be diving alone but are actually together, is mind bending. Our study identifies a framework for studying the sociality and behavior of such chaotically moving, unrestrained marine animals, and we encourage the research community to collect more simultaneous tag data to confirm if our interpretation is appropriate,” Podolskiy concluded.

P2417 Fig5 res
(From left) Evgeny A. Podolskiy, Jonas Teilmann, Mads Peter Heide-Jørgensen. Credit: Evgeny A. Podolskiy | Jonas Teilmann | Mads Peter Heide-Jørgensen

***

This research was supported by the Greenland Institute of Natural Resources, the Commission for Scientific Research in Greenland, the National Ocean Partnership Program, the Office of Naval Research, the Arctic Challenge for Sustainability research project (ArCS-II; JPMXD1420318865), Grants-in-Aid for Scientific Research (KAKENHI; 24K02093) and Hokkaido University.

Journal Reference:
Evgeny A. Podolskiy, Jonas Teilmann and Mads Peter Heide-Jørgensen, ‘Synchronization of bowhead whales’Physical Review Research (2024). DOI: 10.1103/PhysRevResearch.6.033174

Article Source:
Press Release/Material by Hokkaido University
Featured image: Bowhead whale and calf in the Arctic Ocean Credit: GPA Photo Archive | Flickr | CC BY-NC

Image: A new electrode design developed at MIT boosts the efficiency of electrochemical reactions that turn carbon dioxide into ethylene and other products
MIT engineers pioneer advanced technology to transform CO2 into clean fuelScience

MIT engineers pioneer advanced technology to transform CO2 into clean fuel

As global efforts to curb greenhouse gas emissions accelerate, researchers continue to search for practical and cost-effective solutions to convert captured carbon dioxide (CO2) into…
Muser NewsDeskMuser NewsDeskNovember 14, 2024 Full article
Image: American cardinals (s. environment, birds, climate)
Birds adjust life strategies based on climate variability, study findsScience

Birds adjust life strategies based on climate variability, study finds

Summary Environment nudges birds to fast, or slow, life lane Summary: Birds adapt their life strategies to environmental conditions, with some species prioritizing rapid reproduction…
SourceSourceFebruary 26, 2025 Full article
Poyang Lake from space
Poyang Lake restoration advances with new phase to combat climate change and boost biodiversityNews

Poyang Lake restoration advances with new phase to combat climate change and boost biodiversity

Conservation International and Sateri, a leading producer of manmade cellulose fibers, have launched the third phase of the Poyang Lake Ecosystem Restoration Initiative. This milestone…
Muser NewsDeskMuser NewsDeskJanuary 2, 2025 Full article