By Zhang Nannan | Chinese Academy of Sciences

In a study published in One Earth, a research team led by Prof. Deng Ye from Research Center for Eco-Environmental Sciences of the Chinese Academy of Sciences proposed the core-bacteria-forecast model (CoBacFM), which linked the changes of bacterial species, soil pH, and climate change together in global grassland ecosystem.

Image: Graphical abstract (s. soil pH, climate change)
Graphical abstract. Credit: One Earth (2024). DOI: 10.1016/j.oneear.2024.06.002

Soil microbiota are sensitive to climate change, and are key drivers of biogeochemical processes, particularly interacting with soil pH. However, current terrestrial models often neglect microbial communities due to their complexity and high diversity.

In this study, Deng and the international collaborators, including 12 research teams from 6 countries, expended extensive time gathering and construct the global grassland soil microbiota dataset.

“The co-authors are very willing to share their raw research data. This is very helpful in expanding the dataset”, said Prof. Deng, corresponding author of the study.

They found that the grassland soil pH changes under climate change can be well predicted through microbial responses.

Grassland soil pH tends to increase in Northeast Asia, Afirca, and Oceania, and decrease in Central North America, Southern Africa, and Eastern Asia. About one-third of the alkaline areas will become more alkaline. And the warming simulation field experiments support these predictions.

“This study shows that bacterial responses can serve as bioindicators of soil pH changes, providing valuable insights for future climate adaptation strategies. The model could be expanded to other ecosystems,” said Prof. Deng.

More information: Kai Feng, Shang Wang, Qing He, Yunfeng Yang, Jizhong Zhou, Ye Deng et al., ‘CoBacFM: Core bacteria forecast model for global grassland pH dynamics under future climate warming scenarios’, One Earth (2024). DOI: 10.1016/j.oneear.2024.06.002. CAS Press Release / Material. Featured image credit: Charles MingZ | Unsplash

Satelite imagery: Flood, Redon, France
Image of the day: Historic flooding engulfs western FranceNews

Image of the day: Historic flooding engulfs western France

Starting on 27 January 2025, a relentless series of storms brought extreme rainfall to western France, leading to the worst flooding in decades across Ille-et-Vilaine…
Muser NewsDeskMuser NewsDeskFebruary 7, 2025 Full article
Satellite Image: Daugavpils, Latvia
Image of the day: Daugavpils along the Upper DaugavaNews

Image of the day: Daugavpils along the Upper Daugava

In south-eastern Latvia, the city of Daugavpils sits at a point where the Daugava River begins to slow and widen, transitioning from a largely natural…
Muser NewsDeskMuser NewsDeskDecember 30, 2025 Full article
Image: Fieldwork in Svalbard
Arctic peatlands spreading northward as temperatures riseClimate

Arctic peatlands spreading northward as temperatures rise

Warming temperatures and longer growing seasons are driving the outward spread of Arctic peatlands, raising hopes for increased carbon storage, but also concerns about long-term…
SourceSourceJune 19, 2025 Full article