By British Antarctic Survey (BAS)

Warm water that seeps underneath can melt ice in way not yet included in models.

A new and worrying way that large ice sheets can melt has been characterised by scientists for the first time. The research focuses on how relatively warm seawater can lap at the underside of ground-based ice, which can accelerate the movement of the ice into the ocean.

This process is currently not included in models that predict sea level rise, so the new results could offer a more accurate picture of how the world will change with global warming and how much coastal areas will need to adapt.

Carried out by scientists at the British Antarctic Survey (BAS), the findings are published in the journal Nature Geoscience.

“We have identified the possibility of a new tipping-point in Antarctic ice sheet melting,” says Alex Bradley, an ice dynamics researcher at BAS and lead author of the new paper. “This means our projections of sea level rise might be significant underestimates.”

The research focuses on a region beneath an ice sheet called the grounding zone, which is where the ground-based ice meets the sea. Over time, such land-based ice moves into the surrounding ocean and eventually melts – a process that takes place around the coast of Antarctica and Greenland and is a major contributor to sea level rise.

The new study models how seawater can seep between the land and the ice sheet that rests on it, and how this affects the localised melting of the ice, lubricating the bed and influencing the speed at which it could slide towards the sea. And it looks at how this process accelerates with warming water.

“Ice sheets are very sensitive to melting in their grounding zones. We find that grounding zone melting displays a ‘tipping point like’ behaviour, where a very small change in ocean temperature can cause a very big increase in grounding zone melting, which would lead to a very big change in flow of the ice above it,” Bradley says.

This happens because warm water melting in the grounding zone of the ice sheet opens new cavities that allow further ingress of warm water, which causes more melting and bigger cavities, and so on. The tipping point comes because a small increase in the water temperature can have a very big impact on the amount of melting.

Ice melt in this way, which is currently not accounted for in the models used by the Intergovernmental Panel on Climate Change (IPCC) and others, could explain why ice sheets in Antarctica and Greenland seem to be shrinking faster than expected, Bradley says. Including the results of the new work in such models could give more reliable estimates.

“This is missing physics, which isn’t in our ice sheet models. They don’t have the ability to simulate melting beneath grounded ice, which we think is happening. We’re working on putting that into our models now,” Bradley adds.

More information: Alexander T. Bradley, Ian J. Hewitt, ‘Tipping point in ice-sheet grounding-zone melting due to ocean water intrusion’, Nature Geoscience (2024); DOI: 10.1038/s41561-024-01465-7. BAS Press Release. Featured image credit: Dylan Shaw | Unsplash

Image: dark white tunnel (s. underground)
How CO₂ can be permanently stored undergroundScience

How CO₂ can be permanently stored underground

What happens when captured CO₂ is pumped into the ground? Highly sophisticated computer simulations now make it possible to predict its long-term behaviour Summary: Pumping…
SourceSourceApril 9, 2025 Full article
Long-term coral reef monitoring continues to deliver crucial insightsNewsScience

Long-term coral reef monitoring continues to deliver crucial insights

By American Institute of Biological Sciences (AIBS) As the effects of a changing climate and other ecological insults compound, many coral reefs face severe perturbations…
SourceSourceAugust 9, 2024 Full article
Image: Plane passing by the sun on a cloudy day
True scale of carbon impact from long-distance travel revealedClimateScience

True scale of carbon impact from long-distance travel revealed

By University of Leeds The reality of the climate impact of long-distance passenger travel has been revealed in new research from the University of Leeds.…
SourceSourceJuly 2, 2024 Full article