Skip to main content

By University of Copenhagen, The Faculty of Health and Medical Sciences

Scientists from the University of Copenhagen have made significant strides in understanding ancient ocean anoxia, with potential insights for today’s marine environments.

500 million years ago the so-called Cambrian ‘SPICE’ event made oxygen levels in the oceans drop dramatically.

Now, researchers from the University of Copenhagen have investigated how large-scale ocean anoxia, or oxygen-depleted conditions, developed during the event, and its potential consequences today.

In the study, titled ‘Cascading oxygen loss shorewards in the oceans – insights from the Cambrian SPICE event’ published in OneEarth, researchers found that a chain reaction involving phosphorus recycling from ocean sediments played a key role in this decline of the oxygen levels in the oceans.

“Under anoxic conditions, phosphorus is released more efficiently from sediments, which further depleted oxygen levels and expanded anoxia at the global scale,” says Associate Professor Tais W. Dahl at the Globe Institute, senior author of the study. He adds:

“This self-amplifying loop led to a rapid and prolonged marine anoxia. The study warns that the feedback loop is still looming in today’s oceans, where human activities might influence nutrient dynamics in ways that increase the risk setting off cascading anoxic conditions. Coastal zones, in particular, could be susceptible to anoxia that might propagate on a larger scale.”.

While global-scale anoxia is not an immediate threat today due to limited phosphorus resources and high atmospheric oxygen levels, the study highlights the importance of understanding nutrient dynamics and sedimentation processes, particularly in coastal zones. These insights are crucial for managing the health of marine ecosystems and their resident animal species.

By comparing ancient and modern marine systems, this study provides valuable insights into the potential evolution of ocean chemistry today. Emphasizing the importance of historical context, the research aims to improve predictive models and guide policy decisions to safeguard marine ecosystems and ensure their resilience in the face of ongoing environmental changes.

The University of Copenhagen is a leading research and education institution, committed to advancing knowledge through high-quality research and innovative teaching. The university fosters an environment where academic excellence can thrive, contributing significantly to society through impactful research findings.

The Globe Institute is part of the Faculty of Health and Medical Sciences at the University of Copenhagen. The Institute’s main purpose is to address basic scientific questions through interdisciplinary approaches. The institute operates at the intersection of natural and medical sciences and the humanities.

More information: Aske L. Sørensen, Tais W. Dahl, ‘Cascading oxygen loss shorewards in the oceans – insights from the Cambrian SPICE event’, One Earth (vol. 7 Iss 6; 2024); DOI: 10.1016/j.oneear.2024.05.011. Featured image credit: Philip Graves | Unsplash

Arctic tundra shifting from carbon sink to carbon source
Arctic tundra shifting from carbon sink to carbon sourceClimate

Arctic tundra shifting from carbon sink to carbon source

The Arctic is undergoing profound transformations that are accelerating climate change. Once a region that stored carbon dioxide for millennia in its frozen soils, the…
Muser NewsDeskMuser NewsDeskDecember 10, 2024 Full article
Climate change is reshaping China’s agriculture
Beautiful agricultural half green half yellow grass field shot with a drone
Climate change is reshaping China’s agricultureClimate

Climate change is reshaping China’s agriculture

China’s agriculture system, a linchpin of its food security, faces increasing pressure to adapt as climate change reshapes the country’s landscape. Researchers have proposed a…
Muser NewsDeskMuser NewsDeskJanuary 9, 2025 Full article
Building climate resilient cocoa farming in West Africa
Building climate resilient cocoa farming in West AfricaScience

Building climate resilient cocoa farming in West Africa

Agroforestry systems, which integrate trees and shrubs into farming, are vital to achieving sustainable cocoa production in West Africa where 70 percent of the world…
SourceSourceNovember 22, 2024 Full article