By Technical University of Munich (TUM)

From the last ice age until around 6000 years ago, the region now known as the Sahara Desert was a lush, green landscape teeming with life. This “African Humid Period” ended abruptly, transforming this thriving region into the arid terrain seen today.

Scientists have long puzzled over how the slow changes in solar radiation due to variations in Earth’s orbit could lead to such an abrupt large-scale climate transition. This mystery highlights the broader challenge of understanding and predicting abrupt shifts in natural systems—commonly linked to tipping points.

New study by Andreas Morr and Prof. Niklas Boers, researchers at TUM and PIK, introduces an advanced early detection method that provides more accurate and reliable early warnings, particularly under more realistic external conditions.

Traditional methods assume that random disturbances in a system are uncorrelated in time. However, this is not realistic for climate systems, because it assumes each day’s weather would be independent of the previous day. In reality, tomorrow’s weather heavily depends on today’s. This mismatch reduces the reliability of conventional methods for early warning signals. The new method by Morr and Boers addresses this limitation by developing estimators of system stability designed specifically for more realistic climate conditions.

When applying their methods to the desertification of the West Sahara, they found a clear early warning before the loss of vegetation, consistent with the crossing of a tipping point.

“Our findings suggest that the abrupt end of the African Humid Period was likely caused by a weakening of the system’s stability as the orbital configuration of the Earth changed, gradually pushing the system toward a tipping point”, says Andreas Morr.

Niklas Boers adds: “The advanced detection method that we developed enhances our ability to monitor and respond to potential tipping points in various natural systems. Our results suggest that large-scale climate tipping events such as this can in principle be anticipated, hopefully enabling timely interventions.”

By improving the accuracy of early warning signals, the research supports better preparedness and response strategies, ultimately helping to protect ecosystems and human societies from severe impacts of potential climate tipping points that might be crossed due to anthropogenic climate change.

More information: Andreas Morr, Niklas Boers, ‘Detection of Approaching Critical Transitions in Natural Systems Driven by Red Noise’, Physical Review X (2024); DOI: 10.1103/PhysRevX.14.021037. Featured image credit:  Mark Kuiper | Unsplash

Small iceberg floating in ocean water under a bright sky with the Sun visible above - climate change effects (s. science, climate, Muser)
Climate Science Digest: January 30, 2025Science

Climate Science Digest: January 30, 2025

Explore the latest insights from top science journals in the Muser Press daily roundup, featuring impactful research on climate change challenges. KTU researcher on energy…
Muser NewsDeskMuser NewsDeskJanuary 31, 2025 Full article
A tree in the globe hovering in desert - abstract image (s. research, science, climate)
Muser Press – New Research Articles Week 12, 2025Science

Muser Press – New Research Articles Week 12, 2025

Discover the latest articles from leading science journals in the Muser Press weekly roundup, showcasing impactful research published this week. Table of Contents Constructed strain…
Muser NewsDeskMuser NewsDeskMarch 23, 2025 Full article
UN Secretary-General issues Call to Action on Extreme Heat amid record temperaturesClimateNews

UN Secretary-General issues Call to Action on Extreme Heat amid record temperatures

The World Meteorological Organization (WMO) has joined nine other specialized United Nations entities in supporting UN Secretary-General António Guterres' Call to Action on Extreme Heat.…
Muser NewsDeskMuser NewsDeskJuly 26, 2024 Full article