Skip to main content

Published in Geophysical Research Letters, a study by Nagoya University reveals the surprising effects of global warming on typhoons, suggesting a new method for projecting storm strength.

Tropical cyclones, known for their destructive power, are under the influence of global warming in intricate ways, according to a recent study by researchers from Nagoya University in Japan. The findings emphasize the differential impact of rising sea surface temperatures (SST) on typhoons, with larger, slower-moving storms proving more resilient compared to compact, fast-moving counterparts.

As global temperatures continue to rise, the threat of typhoons becomes more pronounced, making it crucial to understand the changes in ocean response to mitigate potential damages. The study led by Sachie Kanada and Hidenori Aiki delves into the relationship between the atmosphere and the ocean, a critical factor influencing weather patterns, ocean circulation, and climate variability.

Image: Nagoya University reveals the surprising effects of global warming on typhoons, suggesting a new method for projecting storm strength
Source: Geophysical Fluid Dynamics Laboratory

The research highlights the linkage between typhoon intensity and SST. Traditionally, the size of a typhoon correlates inversely with its intensity, with larger storms experiencing lower SST, limiting their strength. However, under global warming conditions, higher SST levels could prolong the lifespan of typhoons.

Lead researcher Sachie Kanada warns, “The rise in sea temperatures is concerning because a typical compact, fast-moving storm, like Typhoon Faxai in 2019, caused severe damage to eastern Japan. Our findings show the intensity of such typhoons can strengthen under global warming conditions.”

To understand this phenomenon, researchers utilized the CReSS-NHOES model, a state-of-the-art atmosphere-ocean simulator. Examining four powerful typhoons from recent years — Trami (2018), Faxai (2019), Hagibis (2019), and Haishen (2020) — the team evaluated the impact of atmosphere-ocean coupling under various climate scenarios.

Surprisingly, the study found significant variation in how typhoons respond to a 1°C rise in SST. The researchers introduced a parameter called nondimensional storm speed (S0), creating a new model to distinguish between potentially destructive storms likely to strengthen under global warming and those resilient to its effects.

Sachie Kanada emphasizes the significance of the study, stating, “This research, using a high-resolution coupled regional atmosphere-ocean model, can reproduce the intensity and structure of strong typhoons and the response of the ocean with high accuracy.”

The findings offer a more nuanced understanding of the complex relationship between typhoons and global warming, providing a foundation for improved intensity projections and more accurate forecasting in the future.

Journal Reference:
Kanada, S., & Aiki, H., ‘Buffering effect of atmosphere–ocean coupling on intensity changes of tropical cyclones under a changing climate’, Geophysical Research Letters 51, e2023GL105659 (2024). DOI: 10.1029/2023GL105659

Article Source:
Press Release/Material by Nagoya University
Featured image credit: Freepik (AI Gen.)

Climate Science Digest: January 28, 2025
Small iceberg floating in ocean water under a bright sky with the Sun visible above - climate change effects (s. science, climate, Muser)
Climate Science Digest: January 28, 2025Science

Climate Science Digest: January 28, 2025

Explore the latest insights from top science journals in the Muser Press daily roundup, featuring impactful research on climate change challenges. Antarctic ice sheet faces…
Muser NewsDeskMuser NewsDeskJanuary 29, 2025 Full article
Extreme heat could double cardiovascular disease burden in Australia by 2050
Image: Healthy lifestyle running outdoors (s. climate, cardiovascular disease, health)
Extreme heat could double cardiovascular disease burden in Australia by 2050Science

Extreme heat could double cardiovascular disease burden in Australia by 2050

Burden of cardiovascular disease caused by extreme heat in Australia to more than double by 2050 Summary: Hot weather is already responsible for nearly 50,000…
SourceSourceMarch 17, 2025 Full article
Aircraft noise exposure tied to increased heart risks, study shows
Airplane flying above a building - noise exposure
Aircraft noise exposure tied to increased heart risks, study showsScience

Aircraft noise exposure tied to increased heart risks, study shows

Living near airports may pose a hidden risk to heart health, according to a study published in the Journal of the American College of Cardiology.…
SourceSourceJanuary 9, 2025 Full article